High-pressure research on optoelectronic materials: Insights from in situ characterization methods

High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials, which are vital for a wide range of applications, including photovoltaics, light-emitting devices, and photodetectors. This review highlights various in situ characte...

Full description

Saved in:
Bibliographic Details
Main Authors: Songhao Guo, Yiqiang Zhan, Xujie Lü
Format: Article
Language:English
Published: AIP Publishing LLC 2025-05-01
Series:Matter and Radiation at Extremes
Online Access:http://dx.doi.org/10.1063/5.0258375
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials, which are vital for a wide range of applications, including photovoltaics, light-emitting devices, and photodetectors. This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical, electronic, and structural properties of optoelectronic materials. We explore the advances that have been made in techniques such as X-ray diffraction, absorption spectroscopy, nonlinear optics, photoluminescence spectroscopy, Raman spectroscopy, and photoresponse measurement, emphasizing how these methods have enhanced the elucidation of structural transitions, bandgap modulation, performance optimization, and carrier dynamics engineering. These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.
ISSN:2468-080X