Discharge sensitivity of collapsible drip tapes to water temperature

ABSTRACT The objective of this study was to quantify the effect of water temperature variations on the discharge of collapsible thin-walled drip tapes with integrated non-pressure-compensating emitters. The tests were conducted in the laboratory using an automated test bench. Tests were performed to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ana C. S. de Araujo, José A. Frizzone, Antonio P. de Camargo, Diego J. de S. Pereira, Verônica G. M. L. de Melo, Wagner W. A. Bombardelli
Format: Article
Language:English
Published: Universidade Federal de Campina Grande 2020-11-01
Series:Revista Brasileira de Engenharia Agrícola e Ambiental
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662021000100003&tlng=en
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The objective of this study was to quantify the effect of water temperature variations on the discharge of collapsible thin-walled drip tapes with integrated non-pressure-compensating emitters. The tests were conducted in the laboratory using an automated test bench. Tests were performed to determine the discharge-pressure curves by varying the water temperature from 20 to 50 °C. Nine emitter models of three wall thicknesses (6, 8, and 9 MIL) were evaluated. The coefficients K and x of the discharge-pressure curves varied according to the water temperature. In flat emitters of turbulent flow (x < 0.5), the discharge decreased as the temperature increased. In the welded emitters of turbulent flow, several responses were observed. Regarding emitter D (x > 0.5), the discharge increased as the temperature was increased, while for emitter C (x < 0.5), the discharge decreased; the highest discharge variations occurred at pressures higher than 60 kPa. For embossed emitters, the discharge increased as a function of temperature, however, the greatest variation occurred at the lowest pressures. None of the emitters showed significant difference in the discharge variation due to wall thicknesses.
ISSN:1807-1929