L-arginine dependence of breast cancer – molecular subtypes matter.

Abstract L-arginine limits proliferation in highly proliferative tissues. It is a substrate for nitric oxide synthases, arginases; its methylation by protein-L-arginine methyltransferases (PRMTs) leads to asymmetric (ADMA) and symmetric dimethylarginine (SDMA). We measured L-arginine and its metabol...

Full description

Saved in:
Bibliographic Details
Main Authors: Juliane Hannemann, Leticia Oliveira-Ferrer, Anne Kathrin Goele, Yoana Mileva, Fiona Kleinsang, Antonia Röglin, Isabell Witzel, Volkmar Müller, Rainer Böger
Format: Article
Language:English
Published: BMC 2025-03-01
Series:BMC Cancer
Subjects:
Online Access:https://doi.org/10.1186/s12885-025-13908-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract L-arginine limits proliferation in highly proliferative tissues. It is a substrate for nitric oxide synthases, arginases; its methylation by protein-L-arginine methyltransferases (PRMTs) leads to asymmetric (ADMA) and symmetric dimethylarginine (SDMA). We measured L-arginine and its metabolites L-ornithine, L-citrulline, ADMA, and SDMA in a prospective cohort of 243 women with primary breast cancer (BC) and their associations with mortality and disease recurrence during 88 (IQR, 82–93) months of follow-up. We quantified these metabolites and expression of genes involved in L-arginine metabolic pathways in MCF-7, BT-474, SK-BR-3, MDA-MB-231, and MDA-MB-468 cells representing ER-positive, HER2-positive, and triple-negative BC compared to MCF-12 A cells. Plasma L-arginine and ADMA concentrations were elevated in 47 patients with recurrent disease and in 34 non-survivors. ADMA was significantly associated with mortality and recurrent disease in Luminal A patients; low L-citrulline was significantly associated with survival in triple-negative BC. In all BC cells except MCF-7, DDAH1 and DDAH2 expression was higher than in MCF-12 A (DDAH1: 32–44 fold, DDAH2: 1.7–4.2 fold; p < 0.05). By contrast, MCF-7 cells showed low DDAH1 and DDAH2, but high PRMT4 and PRMT6 expression and high L-arginine content. BT-474 and MDA-MB-468 cells showed high ARG2 expression and high L-ornithine concentrations, and MDA-MB-468 cells had the highest L-citrulline/L-arginine ratio. In conclusion, regulation of L-arginine metabolic pathways shows a complex and differential pattern between BC subtypes. ADMA is a prognostic biomarker in Luminal A patients; its metabolizing enzyme, DDAH, is highly overexpressed in BC cells. Thus, fingerprinting of L-arginine metabolism may offer novel personalized treatment options within BC subtypes.
ISSN:1471-2407