Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems
We establish a new existence result on homoclinic solutions for a second-order nonperiodic Hamiltonian systems. This homoclinic solution is obtained as a limit of solutions of a certain sequence of nil-boundary value problems which are obtained by the minimax methods. Some recent results in the lite...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/417020 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562508872810496 |
---|---|
author | Qiang Zheng |
author_facet | Qiang Zheng |
author_sort | Qiang Zheng |
collection | DOAJ |
description | We establish a new existence result on homoclinic solutions for a second-order nonperiodic Hamiltonian systems. This homoclinic solution is obtained as a limit of solutions of a certain sequence of nil-boundary value problems which are obtained by the minimax methods. Some recent results in the literature are generalized and extended. |
format | Article |
id | doaj-art-fcf66b6b56c941239a463d15839243c5 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-fcf66b6b56c941239a463d15839243c52025-02-03T01:22:32ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/417020417020Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian SystemsQiang Zheng0College of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255049, ChinaWe establish a new existence result on homoclinic solutions for a second-order nonperiodic Hamiltonian systems. This homoclinic solution is obtained as a limit of solutions of a certain sequence of nil-boundary value problems which are obtained by the minimax methods. Some recent results in the literature are generalized and extended.http://dx.doi.org/10.1155/2013/417020 |
spellingShingle | Qiang Zheng Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems Abstract and Applied Analysis |
title | Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems |
title_full | Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems |
title_fullStr | Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems |
title_full_unstemmed | Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems |
title_short | Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems |
title_sort | homoclinic solutions for a second order nonperiodic asymptotically linear hamiltonian systems |
url | http://dx.doi.org/10.1155/2013/417020 |
work_keys_str_mv | AT qiangzheng homoclinicsolutionsforasecondordernonperiodicasymptoticallylinearhamiltoniansystems |