Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT
Women’s safety is very important for around the world and many anti-women safety incidents are happened in current decades. Women's criminality is on the rise in India, particularly on an hourly basis 1000 criminal cases are filed according to Indraprastha and Kannon organizations. The Internet...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
University of Tehran
2023-01-01
|
| Series: | Journal of Information Technology Management |
| Subjects: | |
| Online Access: | https://jitm.ut.ac.ir/article_89410_e7e665ad166442086f6f6fd15ababe0d.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850162150747668480 |
|---|---|
| author | Koppula Srinivas Rao D. V. Divakara Rao Ibrahim Patel K. Saikumar D. Vijendra Babu |
| author_facet | Koppula Srinivas Rao D. V. Divakara Rao Ibrahim Patel K. Saikumar D. Vijendra Babu |
| author_sort | Koppula Srinivas Rao |
| collection | DOAJ |
| description | Women’s safety is very important for around the world and many anti-women safety incidents are happened in current decades. Women's criminality is on the rise in India, particularly on an hourly basis 1000 criminal cases are filed according to Indraprastha and Kannon organizations. The Internet of Things (IoT) application will assist women in difficult situations.This design with Dc-RFO-IoT has an emergency application that can be useful to provide critical thinking and suggestions to women in rescue time. When the emergency soft button is pushed, notifications are sent to registered contacts as well as to women's hotline lines with GPS and GSM. A GPS sensor is also used to transmit the position with longitude and latitude. Every one minute, the receiver sends a link to your location, updating them on your current position. The attacker may shut the victim's mouth and prevent her from requesting assistance. The speaker on this gadget generates high-frequency sound. It will raise the alarm in the surrounding area and make the attacker fearful. This IoT with deep learning application is giving accurate outcomes and measures are improved. The performance measures like accuracy 93.43%, sensitivity 92.87%, Recall 98.34%, safety ratio 97.34%, and F measure 97,89% had been improved these are outperformance the methodology and compete with present models. |
| format | Article |
| id | doaj-art-fcd39bf9500a4720a4eac7ffcfe20fce |
| institution | OA Journals |
| issn | 2008-5893 2423-5059 |
| language | English |
| publishDate | 2023-01-01 |
| publisher | University of Tehran |
| record_format | Article |
| series | Journal of Information Technology Management |
| spelling | doaj-art-fcd39bf9500a4720a4eac7ffcfe20fce2025-08-20T02:22:38ZengUniversity of TehranJournal of Information Technology Management2008-58932423-50592023-01-0115Special Issue345110.22059/jitm.2022.8941089410Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoTKoppula Srinivas Rao0D. V. Divakara Rao1Ibrahim Patel2K. Saikumar3D. Vijendra Babu4Professor in CSE, Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad.Professor, Department of C. S. E, Raghu Engineering College, Dakamarri, Bheemunipatnam Mandal, Visakhapatnam, divakararao.Assoc. Professor Department of Electronics and Communication Engineering B V Raju Institute of Technology, Medak (Dist.), Narsapur. 502313 ibrahim.Department of ECE, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India 522502.Professor, Department of Electronics & Communication Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Paiyanoor-603 104. Tamil Nadu, India.Women’s safety is very important for around the world and many anti-women safety incidents are happened in current decades. Women's criminality is on the rise in India, particularly on an hourly basis 1000 criminal cases are filed according to Indraprastha and Kannon organizations. The Internet of Things (IoT) application will assist women in difficult situations.This design with Dc-RFO-IoT has an emergency application that can be useful to provide critical thinking and suggestions to women in rescue time. When the emergency soft button is pushed, notifications are sent to registered contacts as well as to women's hotline lines with GPS and GSM. A GPS sensor is also used to transmit the position with longitude and latitude. Every one minute, the receiver sends a link to your location, updating them on your current position. The attacker may shut the victim's mouth and prevent her from requesting assistance. The speaker on this gadget generates high-frequency sound. It will raise the alarm in the surrounding area and make the attacker fearful. This IoT with deep learning application is giving accurate outcomes and measures are improved. The performance measures like accuracy 93.43%, sensitivity 92.87%, Recall 98.34%, safety ratio 97.34%, and F measure 97,89% had been improved these are outperformance the methodology and compete with present models.https://jitm.ut.ac.ir/article_89410_e7e665ad166442086f6f6fd15ababe0d.pdfsmart phoneiotgpssensors |
| spellingShingle | Koppula Srinivas Rao D. V. Divakara Rao Ibrahim Patel K. Saikumar D. Vijendra Babu Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT Journal of Information Technology Management smart phone iot gps sensors |
| title | Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT |
| title_full | Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT |
| title_fullStr | Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT |
| title_full_unstemmed | Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT |
| title_short | Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT |
| title_sort | automatic prediction and identification of smart women safety wearable device using dc rfo iot |
| topic | smart phone iot gps sensors |
| url | https://jitm.ut.ac.ir/article_89410_e7e665ad166442086f6f6fd15ababe0d.pdf |
| work_keys_str_mv | AT koppulasrinivasrao automaticpredictionandidentificationofsmartwomensafetywearabledeviceusingdcrfoiot AT dvdivakararao automaticpredictionandidentificationofsmartwomensafetywearabledeviceusingdcrfoiot AT ibrahimpatel automaticpredictionandidentificationofsmartwomensafetywearabledeviceusingdcrfoiot AT ksaikumar automaticpredictionandidentificationofsmartwomensafetywearabledeviceusingdcrfoiot AT dvijendrababu automaticpredictionandidentificationofsmartwomensafetywearabledeviceusingdcrfoiot |