Potential Use of Organic- and Hard-Rock Mine Wastes on Aided Phytostabilization of Large-Scale Mine Tailings under Semiarid Mediterranean Climatic Conditions: Short-Term Field Study

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudia Santibañez, Luz María de la Fuente, Elena Bustamante, Sergio Silva, Pedro León-Lobos, Rosanna Ginocchio
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Applied and Environmental Soil Science
Online Access:http://dx.doi.org/10.1155/2012/895817
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100 t ha-1 dry weight, d.w.) and grape residues (200 t ha-1 d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20 cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments.
ISSN:1687-7667
1687-7675