Enhancing imputation accuracy for catch-all missing data mechanisms with DFBETAS and leverage
This paper addresses the challenge of missing data in scientific research. It specifically examines the case of missing data arising from a “catch-all” missing not at ran (MNAR) mechanism, where missing values are disproportionately from one category, such as income or ethnicity in surveys. The stud...
Saved in:
Main Authors: | Fares Qeadan, William A. Barbeau |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis
2025-12-01
|
Series: | Research in Statistics |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/27684520.2025.2451682 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Quantum Circuit for Imputation of Missing Data
by: Claudio Sanavio, et al.
Published: (2024-01-01) -
How much missing data is too much to impute for longitudinal health indicators? A preliminary guideline for the choice of the extent of missing proportion to impute with multiple imputation by chained equations
by: K. P. Junaid, et al.
Published: (2025-02-01) -
The Performance of Multiple Imputation in Social Surveys with Missing Data from Planned Missingness and Item Nonresponse
by: Julian B. Axenfeld, et al.
Published: (2024-08-01) -
Optimal Imputation Methods under Stratified Ranked Set Sampling
by: Shashi Bhushan, et al.
Published: (2025-02-01) -
A generative model for evaluating missing data methods in large epidemiological cohorts
by: Lav Radosavljević, et al.
Published: (2025-02-01)