Recognition of Strawberry Powdery Mildew in Complex Backgrounds: A Comparative Study of Deep Learning Models
Powdery mildew is one of the most common diseases affecting strawberry yield and quality. Accurate and timely detection is essential to reduce pesticide usage and labor costs. However, recognizing strawberry powdery mildew in complex field environments remains a significant challenge. In this study,...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | AgriEngineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-7402/7/6/182 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Powdery mildew is one of the most common diseases affecting strawberry yield and quality. Accurate and timely detection is essential to reduce pesticide usage and labor costs. However, recognizing strawberry powdery mildew in complex field environments remains a significant challenge. In this study, an HSV-based image segmentation method was employed to enhance the extraction of disease regions from complex backgrounds. A total of 14 widely used deep learning models—including SqueezeNet, GoogLeNet, ResNet-50, AlexNet, and others—were systematically evaluated for their classification performance. To address sample imbalance, data augmentation was applied to 2372 healthy and 553 diseased leaf images, resulting in 11,860 training samples. Experimental results showed that InceptionV4, DenseNet-121, and ResNet-50 achieved superior performance across metrics such as accuracy, F1-score, recall, and loss. Models such as MobileNetV2, AlexNet, VGG-16, and InceptionV3 demonstrated certain strengths, and models like SqueezeNet, VGG-19, EfficientNet, and even ResNet-50 showed room for further improvement in performance. These findings demonstrate that CNN models originally developed for other crop diseases can be effectively adapted to detect strawberry powdery mildew under complex conditions. Future work will focus on enhancing model robustness and deploying the system for real-time field monitoring. |
|---|---|
| ISSN: | 2624-7402 |