Rough Set Neural Network Feature Extraction and Pattern Recognition of Shaft Orbits Based on the Zernike Moment

In the shaft axis monitoring of hydrogenerating unit condition monitoring and fault diagnosis, the shaft orbit is intuitive and comprehensively reflects the unit operation state, and different shaft orbits correspond to different fault types, which can accurately indicate a system vibration fault. S...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinfeng Ge, Jing Zhang, Ye Zhou, Jianguo Cai, Hui Zhang, Hongchang Hua, Dong Chen, Ming Zhao, Jinqi Du, Yuan Zheng
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6680640
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the shaft axis monitoring of hydrogenerating unit condition monitoring and fault diagnosis, the shaft orbit is intuitive and comprehensively reflects the unit operation state, and different shaft orbits correspond to different fault types, which can accurately indicate a system vibration fault. Shaft orbit identification has important significance for vibration fault diagnosis. In getting the feature extraction and pattern recognition of a shaft orbit, the Zernike moment is better than the Hu moment; it has the advantages of a small calculation error and a high recognition rate. A rough set neural network (RS-BP hybrid model) of shaft orbit recognition is established, which uses just 13 moment eigenvalues reserved by the rough set feature selection algorithm as input variables; it has the same calculation error and recognition rate and reduces the calculation time step. The simulation of the recognition of shaft orbits shows that the hybrid model has achieved good results in the identification of shaft orbits.
ISSN:1070-9622
1875-9203