Semigroup structure underlying evoluations

A member of a class of evolution systems is defined by averaging a one parameter family of invertible transformations G with a semigroup T. The resulting evolution system, U(t,s)=G(t)T(t−s)G(s)−1, preserves continuity and strong continuity, and in case G is a linear family, may have an identifiable...

Full description

Saved in:
Bibliographic Details
Main Author: G. Edgar Parker
Format: Article
Language:English
Published: Wiley 1982-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171282000040
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A member of a class of evolution systems is defined by averaging a one parameter family of invertible transformations G with a semigroup T. The resulting evolution system, U(t,s)=G(t)T(t−s)G(s)−1, preserves continuity and strong continuity, and in case G is a linear family, may have an identifiable generator and resolvent both of which are constructed from T. Occurrences of the class of evolutions are given to show possible applications.
ISSN:0161-1712
1687-0425