Increased Myo/Nog Cell Presence and Phagocytic Activity in Retinal Degeneration: Insights from a Mouse Model
Myo/Nog cells play a pivotal role in ocular development and demonstrate a rapid response to stress and injury. This study investigates their behavior and distribution in a murine model of retinitis pigmentosa, specifically in C3H/HeJ mice, which exhibit photoreceptor degeneration due to a homozygous...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/10/5486 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Myo/Nog cells play a pivotal role in ocular development and demonstrate a rapid response to stress and injury. This study investigates their behavior and distribution in a murine model of retinitis pigmentosa, specifically in C3H/HeJ mice, which exhibit photoreceptor degeneration due to a homozygous mutation in the Pde6brd1 gene. Retinal samples from C3H/HeJ and C57BL/6J mice were analyzed at postnatal weeks 2.5 to 6 using hematoxylin and eosin staining, immunofluorescence for brain-specific angiogenesis inhibitor 1 (BAI1) expressed in Myo/Nog cells, and TUNEL labeling for apoptotic cell detection. The results demonstrated a progressive thinning of the outer nuclear layer (ONL) in C3H mice, accompanied by a significant increase in Myo/Nog cell numbers. In normal retinas, Myo/Nog cells were primarily located in the inner nuclear and outer plexiform layers. However, in C3H/HeJ mice, they accumulated in the ONL near apoptotic photoreceptors and within the choroid. Notably, in these degenerative regions, Myo/Nog cells exhibited features of phagocytosis, suggesting a role in apoptotic cell clearance. Additionally, parallels between Myo/Nog cell responses in retinitis pigmentosa and models of oxygen-induced retinopathy, ocular hypertension, and light damage suggest that these cells may be leveraged for therapeutic purposes. |
|---|---|
| ISSN: | 2076-3417 |