More on Codes Over Finite Quotients of Polynomial Rings

Let <inline-formula> <tex-math notation="LaTeX">$q=p^{r}$ </tex-math></inline-formula> be a prime power, <inline-formula> <tex-math notation="LaTeX">${\mathbb {F}}_{q}$ </tex-math></inline-formula> be the finite field of order q and...

Full description

Saved in:
Bibliographic Details
Main Authors: Emad Kadhim Al-Lami, Reza Sobhani, Alireza Abdollahi, Javad Bagherian
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10845791/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583270541295616
author Emad Kadhim Al-Lami
Reza Sobhani
Alireza Abdollahi
Javad Bagherian
author_facet Emad Kadhim Al-Lami
Reza Sobhani
Alireza Abdollahi
Javad Bagherian
author_sort Emad Kadhim Al-Lami
collection DOAJ
description Let <inline-formula> <tex-math notation="LaTeX">$q=p^{r}$ </tex-math></inline-formula> be a prime power, <inline-formula> <tex-math notation="LaTeX">${\mathbb {F}}_{q}$ </tex-math></inline-formula> be the finite field of order q and <inline-formula> <tex-math notation="LaTeX">$f(x)$ </tex-math></inline-formula> be a monic polynomial in <inline-formula> <tex-math notation="LaTeX">${\mathbb {F}}_{q}[x]$ </tex-math></inline-formula>. Set <inline-formula> <tex-math notation="LaTeX">${\mathbb {A}}:={\mathbb {F}}_{q}[x]/{\left \lt {{ f(x) }}\right \gt }$ </tex-math></inline-formula>. In this paper we continue the study (started by T. P. Berger and N. El Amrani) of <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length l over <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>, i.e. <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-submodules of <inline-formula> <tex-math notation="LaTeX">${\mathbb {A}}^{l}$ </tex-math></inline-formula>. We introduce two types of unique generating sets, called type I and type II basis of divisors, for an <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-code. Using this, we present a building-up construction so that one can obtain all distinct <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length l, with their basis of divisors. We complete the classification for the special case <inline-formula> <tex-math notation="LaTeX">$l=2$ </tex-math></inline-formula> and enumerate all the <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length 2. As an example, we list all binary index-2 quasi-cyclic codes of lengths 16 and 32, and all ternary index-2 quasi-cyclic codes of lengths 6 and 18, which are best-known codes.
format Article
id doaj-art-fa9bc796a7484a8b8b07387df7474a16
institution Kabale University
issn 2169-3536
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-fa9bc796a7484a8b8b07387df7474a162025-01-29T00:00:54ZengIEEEIEEE Access2169-35362025-01-0113153391534510.1109/ACCESS.2025.353164410845791More on Codes Over Finite Quotients of Polynomial RingsEmad Kadhim Al-Lami0Reza Sobhani1https://orcid.org/0000-0001-6876-307XAlireza Abdollahi2https://orcid.org/0000-0001-7277-4855Javad Bagherian3Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, IranDepartment of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, IranDepartment of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, IranDepartment of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, IranLet <inline-formula> <tex-math notation="LaTeX">$q=p^{r}$ </tex-math></inline-formula> be a prime power, <inline-formula> <tex-math notation="LaTeX">${\mathbb {F}}_{q}$ </tex-math></inline-formula> be the finite field of order q and <inline-formula> <tex-math notation="LaTeX">$f(x)$ </tex-math></inline-formula> be a monic polynomial in <inline-formula> <tex-math notation="LaTeX">${\mathbb {F}}_{q}[x]$ </tex-math></inline-formula>. Set <inline-formula> <tex-math notation="LaTeX">${\mathbb {A}}:={\mathbb {F}}_{q}[x]/{\left \lt {{ f(x) }}\right \gt }$ </tex-math></inline-formula>. In this paper we continue the study (started by T. P. Berger and N. El Amrani) of <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length l over <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>, i.e. <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-submodules of <inline-formula> <tex-math notation="LaTeX">${\mathbb {A}}^{l}$ </tex-math></inline-formula>. We introduce two types of unique generating sets, called type I and type II basis of divisors, for an <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-code. Using this, we present a building-up construction so that one can obtain all distinct <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length l, with their basis of divisors. We complete the classification for the special case <inline-formula> <tex-math notation="LaTeX">$l=2$ </tex-math></inline-formula> and enumerate all the <inline-formula> <tex-math notation="LaTeX">$\mathbb {A}$ </tex-math></inline-formula>-codes of length 2. As an example, we list all binary index-2 quasi-cyclic codes of lengths 16 and 32, and all ternary index-2 quasi-cyclic codes of lengths 6 and 18, which are best-known codes.https://ieeexplore.ieee.org/document/10845791/Polynomial ringpolynomial quotient ringgenerator matrixparity check matrixbasis of divisors
spellingShingle Emad Kadhim Al-Lami
Reza Sobhani
Alireza Abdollahi
Javad Bagherian
More on Codes Over Finite Quotients of Polynomial Rings
IEEE Access
Polynomial ring
polynomial quotient ring
generator matrix
parity check matrix
basis of divisors
title More on Codes Over Finite Quotients of Polynomial Rings
title_full More on Codes Over Finite Quotients of Polynomial Rings
title_fullStr More on Codes Over Finite Quotients of Polynomial Rings
title_full_unstemmed More on Codes Over Finite Quotients of Polynomial Rings
title_short More on Codes Over Finite Quotients of Polynomial Rings
title_sort more on codes over finite quotients of polynomial rings
topic Polynomial ring
polynomial quotient ring
generator matrix
parity check matrix
basis of divisors
url https://ieeexplore.ieee.org/document/10845791/
work_keys_str_mv AT emadkadhimallami moreoncodesoverfinitequotientsofpolynomialrings
AT rezasobhani moreoncodesoverfinitequotientsofpolynomialrings
AT alirezaabdollahi moreoncodesoverfinitequotientsofpolynomialrings
AT javadbagherian moreoncodesoverfinitequotientsofpolynomialrings