An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma

Background: Despite advances in uveal melanoma (UM) diagnosis and treatment, about 50% of patients develop distant metastases, thereby displaying poor overall survival. Molecular profiling has identified several genetic alterations that can stratify patients with UM into different risk categories. H...

Full description

Saved in:
Bibliographic Details
Main Authors: Michele Massimino, Elena Tirrò, Stefania Stella, Cristina Tomarchio, Sebastiano Di Bella, Silvia Rita Vitale, Chiara Conti, Marialuisa Puglisi, Rosa Maria Di Crescenzo, Silvia Varricchio, Francesco Merolla, Giuseppe Broggi, Federica Martorana, Alice Turdo, Miriam Gaggianesi, Livia Manzella, Andrea Russo, Giorgio Stassi, Rosario Caltabiano, Stefania Staibano, Paolo Vigneri
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/1/146
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588947119669248
author Michele Massimino
Elena Tirrò
Stefania Stella
Cristina Tomarchio
Sebastiano Di Bella
Silvia Rita Vitale
Chiara Conti
Marialuisa Puglisi
Rosa Maria Di Crescenzo
Silvia Varricchio
Francesco Merolla
Giuseppe Broggi
Federica Martorana
Alice Turdo
Miriam Gaggianesi
Livia Manzella
Andrea Russo
Giorgio Stassi
Rosario Caltabiano
Stefania Staibano
Paolo Vigneri
author_facet Michele Massimino
Elena Tirrò
Stefania Stella
Cristina Tomarchio
Sebastiano Di Bella
Silvia Rita Vitale
Chiara Conti
Marialuisa Puglisi
Rosa Maria Di Crescenzo
Silvia Varricchio
Francesco Merolla
Giuseppe Broggi
Federica Martorana
Alice Turdo
Miriam Gaggianesi
Livia Manzella
Andrea Russo
Giorgio Stassi
Rosario Caltabiano
Stefania Staibano
Paolo Vigneri
author_sort Michele Massimino
collection DOAJ
description Background: Despite advances in uveal melanoma (UM) diagnosis and treatment, about 50% of patients develop distant metastases, thereby displaying poor overall survival. Molecular profiling has identified several genetic alterations that can stratify patients with UM into different risk categories. However, these genetic alterations are currently dispersed over multiple studies and several methodologies, emphasizing the need for a defined workflow that will allow standardized and reproducible molecular analyses. Methods: Following the findings published by “The Cancer Genome Atlas–UM” (TCGA-UM) study, we developed an NGS-based gene panel (called the UMpanel) that classifies mutation sets in four categories: initiating alterations (<i>CYSLTR2</i>, <i>GNA11</i>, <i>GNAQ</i> and <i>PLCB4</i>), prognostic alterations (<i>BAP1</i>, <i>EIF1AX</i>, <i>SF3B1</i> and <i>SRSF2</i>), emergent biomarkers (<i>CDKN2A</i>, <i>CENPE</i>, <i>FOXO1</i>, <i>HIF1A</i>, <i>RPL5</i> and <i>TP53</i>) and chromosomal abnormalities (imbalances in chromosomes 1, 3 and 8). Results: Employing commercial gene panels, reference mutated DNAs and Sanger sequencing, we performed a comparative analysis and found that our methodological approach successfully predicted survival with great specificity and sensitivity compared to the TCGA-UM cohort that was used as a validation group. Conclusions: Our results demonstrate that a reproducible NGS-based workflow translates into a reliable tool for the clinical stratification of patients with UM.
format Article
id doaj-art-fa8c1d1111ca4542b68f6f541905165b
institution Kabale University
issn 2218-273X
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Biomolecules
spelling doaj-art-fa8c1d1111ca4542b68f6f541905165b2025-01-24T13:25:22ZengMDPI AGBiomolecules2218-273X2025-01-0115114610.3390/biom15010146An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal MelanomaMichele Massimino0Elena Tirrò1Stefania Stella2Cristina Tomarchio3Sebastiano Di Bella4Silvia Rita Vitale5Chiara Conti6Marialuisa Puglisi7Rosa Maria Di Crescenzo8Silvia Varricchio9Francesco Merolla10Giuseppe Broggi11Federica Martorana12Alice Turdo13Miriam Gaggianesi14Livia Manzella15Andrea Russo16Giorgio Stassi17Rosario Caltabiano18Stefania Staibano19Paolo Vigneri20Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, ItalyCenter of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, ItalyCenter of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, ItalyCenter of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, ItalyDepartment of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, ItalyCenter of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, ItalyDepartment of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, ItalyDepartment of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, ItalyPathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, ItalyPathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, ItalyDepartment of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, ItalyDepartment of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, ItalyDepartment of Clinical and Experimental Medicine, University of Catania, 95123 Catania, ItalyDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, ItalyDepartment of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, ItalyCenter of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, ItalyDepartment of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, ItalyDepartment of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, ItalyDepartment of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, ItalyPathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, ItalyDepartment of Clinical and Experimental Medicine, University of Catania, 95123 Catania, ItalyBackground: Despite advances in uveal melanoma (UM) diagnosis and treatment, about 50% of patients develop distant metastases, thereby displaying poor overall survival. Molecular profiling has identified several genetic alterations that can stratify patients with UM into different risk categories. However, these genetic alterations are currently dispersed over multiple studies and several methodologies, emphasizing the need for a defined workflow that will allow standardized and reproducible molecular analyses. Methods: Following the findings published by “The Cancer Genome Atlas–UM” (TCGA-UM) study, we developed an NGS-based gene panel (called the UMpanel) that classifies mutation sets in four categories: initiating alterations (<i>CYSLTR2</i>, <i>GNA11</i>, <i>GNAQ</i> and <i>PLCB4</i>), prognostic alterations (<i>BAP1</i>, <i>EIF1AX</i>, <i>SF3B1</i> and <i>SRSF2</i>), emergent biomarkers (<i>CDKN2A</i>, <i>CENPE</i>, <i>FOXO1</i>, <i>HIF1A</i>, <i>RPL5</i> and <i>TP53</i>) and chromosomal abnormalities (imbalances in chromosomes 1, 3 and 8). Results: Employing commercial gene panels, reference mutated DNAs and Sanger sequencing, we performed a comparative analysis and found that our methodological approach successfully predicted survival with great specificity and sensitivity compared to the TCGA-UM cohort that was used as a validation group. Conclusions: Our results demonstrate that a reproducible NGS-based workflow translates into a reliable tool for the clinical stratification of patients with UM.https://www.mdpi.com/2218-273X/15/1/146molecular profilingTCGAuveal melanomaNGS
spellingShingle Michele Massimino
Elena Tirrò
Stefania Stella
Cristina Tomarchio
Sebastiano Di Bella
Silvia Rita Vitale
Chiara Conti
Marialuisa Puglisi
Rosa Maria Di Crescenzo
Silvia Varricchio
Francesco Merolla
Giuseppe Broggi
Federica Martorana
Alice Turdo
Miriam Gaggianesi
Livia Manzella
Andrea Russo
Giorgio Stassi
Rosario Caltabiano
Stefania Staibano
Paolo Vigneri
An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
Biomolecules
molecular profiling
TCGA
uveal melanoma
NGS
title An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
title_full An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
title_fullStr An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
title_full_unstemmed An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
title_short An Optimized NGS Workflow Defines Genetically Based Prognostic Categories for Patients with Uveal Melanoma
title_sort optimized ngs workflow defines genetically based prognostic categories for patients with uveal melanoma
topic molecular profiling
TCGA
uveal melanoma
NGS
url https://www.mdpi.com/2218-273X/15/1/146
work_keys_str_mv AT michelemassimino anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT elenatirro anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT stefaniastella anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT cristinatomarchio anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT sebastianodibella anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT silviaritavitale anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT chiaraconti anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT marialuisapuglisi anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT rosamariadicrescenzo anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT silviavarricchio anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT francescomerolla anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT giuseppebroggi anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT federicamartorana anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT aliceturdo anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT miriamgaggianesi anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT liviamanzella anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT andrearusso anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT giorgiostassi anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT rosariocaltabiano anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT stefaniastaibano anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT paolovigneri anoptimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT michelemassimino optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT elenatirro optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT stefaniastella optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT cristinatomarchio optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT sebastianodibella optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT silviaritavitale optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT chiaraconti optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT marialuisapuglisi optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT rosamariadicrescenzo optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT silviavarricchio optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT francescomerolla optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT giuseppebroggi optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT federicamartorana optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT aliceturdo optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT miriamgaggianesi optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT liviamanzella optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT andrearusso optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT giorgiostassi optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT rosariocaltabiano optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT stefaniastaibano optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma
AT paolovigneri optimizedngsworkflowdefinesgeneticallybasedprognosticcategoriesforpatientswithuvealmelanoma