Analysis of the amplitude form of the quantum hash function

In this article, the properties of quantum hash functions are further explored. Previous findings show that so-called small-bias sets (special subsets of the set of elements of a cyclic group) generate a “phase” quantum hash function. Here, it was proved that they also generate an “amplitude” quantu...

Full description

Saved in:
Bibliographic Details
Main Authors: M. F. Ablayev, F. M. Ablayev, A. V. Vasiliev
Format: Article
Language:English
Published: Kazan Federal University 2023-11-01
Series:Учёные записки Казанского университета: Серия Физико-математические науки
Subjects:
Online Access:https://uzakufismat.elpub.ru/jour/article/view/3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832569230607777792
author M. F. Ablayev
F. M. Ablayev
A. V. Vasiliev
author_facet M. F. Ablayev
F. M. Ablayev
A. V. Vasiliev
author_sort M. F. Ablayev
collection DOAJ
description In this article, the properties of quantum hash functions are further explored. Previous findings show that so-called small-bias sets (special subsets of the set of elements of a cyclic group) generate a “phase” quantum hash function. Here, it was proved that they also generate an “amplitude” quantum hash function. Namely, it turned out that constructing small-bias sets while generating amplitude quantum functions yields a well-balanced combination of the cryptographic properties of unidirectionality and collision resistance. As a corollary of the obtained theorem, a general statement about the generation of new amplitude quantum hash functions based on universal hash families and small-bias sets was proved.
format Article
id doaj-art-fa706709c8e847fbb5cf47091a258cda
institution Kabale University
issn 2541-7746
2500-2198
language English
publishDate 2023-11-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета: Серия Физико-математические науки
spelling doaj-art-fa706709c8e847fbb5cf47091a258cda2025-02-02T23:06:08ZengKazan Federal UniversityУчёные записки Казанского университета: Серия Физико-математические науки2541-77462500-21982023-11-01165151510.26907/2541-7746.2023.1.5-152Analysis of the amplitude form of the quantum hash functionM. F. Ablayev0F. M. Ablayev1A. V. Vasiliev2Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”; Kazan Federal UniversityKazan Federal UniversityFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”; Kazan Federal UniversityIn this article, the properties of quantum hash functions are further explored. Previous findings show that so-called small-bias sets (special subsets of the set of elements of a cyclic group) generate a “phase” quantum hash function. Here, it was proved that they also generate an “amplitude” quantum hash function. Namely, it turned out that constructing small-bias sets while generating amplitude quantum functions yields a well-balanced combination of the cryptographic properties of unidirectionality and collision resistance. As a corollary of the obtained theorem, a general statement about the generation of new amplitude quantum hash functions based on universal hash families and small-bias sets was proved.https://uzakufismat.elpub.ru/jour/article/view/3quantum cryptographyquantum hashingcollision resistance
spellingShingle M. F. Ablayev
F. M. Ablayev
A. V. Vasiliev
Analysis of the amplitude form of the quantum hash function
Учёные записки Казанского университета: Серия Физико-математические науки
quantum cryptography
quantum hashing
collision resistance
title Analysis of the amplitude form of the quantum hash function
title_full Analysis of the amplitude form of the quantum hash function
title_fullStr Analysis of the amplitude form of the quantum hash function
title_full_unstemmed Analysis of the amplitude form of the quantum hash function
title_short Analysis of the amplitude form of the quantum hash function
title_sort analysis of the amplitude form of the quantum hash function
topic quantum cryptography
quantum hashing
collision resistance
url https://uzakufismat.elpub.ru/jour/article/view/3
work_keys_str_mv AT mfablayev analysisoftheamplitudeformofthequantumhashfunction
AT fmablayev analysisoftheamplitudeformofthequantumhashfunction
AT avvasiliev analysisoftheamplitudeformofthequantumhashfunction