The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix

We establish a Perron–Frobenius-type theorem for the subdominant eigenvalue of Möbius monotone transition matrices defined on partially ordered state spaces. This result extends the classical work of Keilson and Kester, where they considered stochastically monotone transition matrices in a totally o...

Full description

Saved in:
Bibliographic Details
Main Authors: Pei-Sen Li, Pan Zhao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/7/493
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246450323554304
author Pei-Sen Li
Pan Zhao
author_facet Pei-Sen Li
Pan Zhao
author_sort Pei-Sen Li
collection DOAJ
description We establish a Perron–Frobenius-type theorem for the subdominant eigenvalue of Möbius monotone transition matrices defined on partially ordered state spaces. This result extends the classical work of Keilson and Kester, where they considered stochastically monotone transition matrices in a totally ordered setting. Furthermore, we show that this subdominant eigenvalue is the geometric ergodicity rate.
format Article
id doaj-art-fa61b8eb516e44cbba1a5fae721dec70
institution Kabale University
issn 2075-1680
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-fa61b8eb516e44cbba1a5fae721dec702025-08-20T03:58:30ZengMDPI AGAxioms2075-16802025-06-0114749310.3390/axioms14070493The Subdominant Eigenvalue of Möbius Monotone Transition Probability MatrixPei-Sen Li0Pan Zhao1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100872, ChinaInstitute of Mathematics and Physics, Beijing Union University, Beijing 100101, ChinaWe establish a Perron–Frobenius-type theorem for the subdominant eigenvalue of Möbius monotone transition matrices defined on partially ordered state spaces. This result extends the classical work of Keilson and Kester, where they considered stochastically monotone transition matrices in a totally ordered setting. Furthermore, we show that this subdominant eigenvalue is the geometric ergodicity rate.https://www.mdpi.com/2075-1680/14/7/493eigenvaluesMöbius monotonepartially ordered spacesPerron-Frobenius theorem
spellingShingle Pei-Sen Li
Pan Zhao
The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
Axioms
eigenvalues
Möbius monotone
partially ordered spaces
Perron-Frobenius theorem
title The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
title_full The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
title_fullStr The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
title_full_unstemmed The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
title_short The Subdominant Eigenvalue of Möbius Monotone Transition Probability Matrix
title_sort subdominant eigenvalue of mobius monotone transition probability matrix
topic eigenvalues
Möbius monotone
partially ordered spaces
Perron-Frobenius theorem
url https://www.mdpi.com/2075-1680/14/7/493
work_keys_str_mv AT peisenli thesubdominanteigenvalueofmobiusmonotonetransitionprobabilitymatrix
AT panzhao thesubdominanteigenvalueofmobiusmonotonetransitionprobabilitymatrix
AT peisenli subdominanteigenvalueofmobiusmonotonetransitionprobabilitymatrix
AT panzhao subdominanteigenvalueofmobiusmonotonetransitionprobabilitymatrix