A note on surfaces with prescribed oriented Euclidean Gauss map
We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea t...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.537 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832559044659773440 |
---|---|
author | Ricardo Sa Earp Eric Toubiana |
author_facet | Ricardo Sa Earp Eric Toubiana |
author_sort | Ricardo Sa Earp |
collection | DOAJ |
description | We present another proof of a theorem due to Hoffman and Osserman
in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determine a conformal immersion, proved in a previous paper. |
format | Article |
id | doaj-art-f9859c94c6dc4109a292a06d5e39a4a8 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2005-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-f9859c94c6dc4109a292a06d5e39a4a82025-02-03T01:31:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-012005453754310.1155/IJMMS.2005.537A note on surfaces with prescribed oriented Euclidean Gauss mapRicardo Sa Earp0Eric Toubiana1Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquâs de São Vicente, 225-Gávea, Rio de Janeiro, BrazilCentre de Mathématiques de Jussieu, Université Paris 7-Denis Diderot, 2 Place Jussieu, Paris Cedex 05 F-75251, FranceWe present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determine a conformal immersion, proved in a previous paper.http://dx.doi.org/10.1155/IJMMS.2005.537 |
spellingShingle | Ricardo Sa Earp Eric Toubiana A note on surfaces with prescribed oriented Euclidean Gauss map International Journal of Mathematics and Mathematical Sciences |
title | A note on surfaces with prescribed oriented Euclidean Gauss map |
title_full | A note on surfaces with prescribed oriented Euclidean Gauss map |
title_fullStr | A note on surfaces with prescribed oriented Euclidean Gauss map |
title_full_unstemmed | A note on surfaces with prescribed oriented Euclidean Gauss map |
title_short | A note on surfaces with prescribed oriented Euclidean Gauss map |
title_sort | note on surfaces with prescribed oriented euclidean gauss map |
url | http://dx.doi.org/10.1155/IJMMS.2005.537 |
work_keys_str_mv | AT ricardosaearp anoteonsurfaceswithprescribedorientedeuclideangaussmap AT erictoubiana anoteonsurfaceswithprescribedorientedeuclideangaussmap AT ricardosaearp noteonsurfaceswithprescribedorientedeuclideangaussmap AT erictoubiana noteonsurfaceswithprescribedorientedeuclideangaussmap |