A note on surfaces with prescribed oriented Euclidean Gauss map

We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ricardo Sa Earp, Eric Toubiana
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.537
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559044659773440
author Ricardo Sa Earp
Eric Toubiana
author_facet Ricardo Sa Earp
Eric Toubiana
author_sort Ricardo Sa Earp
collection DOAJ
description We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determine a conformal immersion, proved in a previous paper.
format Article
id doaj-art-f9859c94c6dc4109a292a06d5e39a4a8
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-f9859c94c6dc4109a292a06d5e39a4a82025-02-03T01:31:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-012005453754310.1155/IJMMS.2005.537A note on surfaces with prescribed oriented Euclidean Gauss mapRicardo Sa Earp0Eric Toubiana1Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquâs de São Vicente, 225-Gávea, Rio de Janeiro, BrazilCentre de Mathématiques de Jussieu, Université Paris 7-Denis Diderot, 2 Place Jussieu, Paris Cedex 05 F-75251, FranceWe present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determine a conformal immersion, proved in a previous paper.http://dx.doi.org/10.1155/IJMMS.2005.537
spellingShingle Ricardo Sa Earp
Eric Toubiana
A note on surfaces with prescribed oriented Euclidean Gauss map
International Journal of Mathematics and Mathematical Sciences
title A note on surfaces with prescribed oriented Euclidean Gauss map
title_full A note on surfaces with prescribed oriented Euclidean Gauss map
title_fullStr A note on surfaces with prescribed oriented Euclidean Gauss map
title_full_unstemmed A note on surfaces with prescribed oriented Euclidean Gauss map
title_short A note on surfaces with prescribed oriented Euclidean Gauss map
title_sort note on surfaces with prescribed oriented euclidean gauss map
url http://dx.doi.org/10.1155/IJMMS.2005.537
work_keys_str_mv AT ricardosaearp anoteonsurfaceswithprescribedorientedeuclideangaussmap
AT erictoubiana anoteonsurfaceswithprescribedorientedeuclideangaussmap
AT ricardosaearp noteonsurfaceswithprescribedorientedeuclideangaussmap
AT erictoubiana noteonsurfaceswithprescribedorientedeuclideangaussmap