Exact Traveling Wave Solutions and Bifurcation of a Generalized (3+1)-Dimensional Time-Fractional Camassa-Holm-Kadomtsev-Petviashvili Equation
In this paper, we study the (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation with a conformable fractional derivative. By the fractional complex transform and the bifurcation method for dynamical systems, we investigate the dynamical behavior and bifurcation of solution...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/4532824 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study the (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation with a conformable fractional derivative. By the fractional complex transform and the bifurcation method for dynamical systems, we investigate the dynamical behavior and bifurcation of solutions of the traveling wave system and seek all possible exact traveling wave solutions of the equation. Furthermore, the phase portraits of the dynamical system and the remarkable features of the solutions are demonstrated via interesting figures. |
---|---|
ISSN: | 2314-8896 2314-8888 |