SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx

ABSTRACT The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucos...

Full description

Saved in:
Bibliographic Details
Main Authors: Cameron Martino, Benjamin P. Kellman, Daniel R. Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E. Clark, Aaron F. Garretson, Clarisse A. Marotz, Se Jin Song, Stephen Wandro, Livia S. Zaramela, Rodolfo A. Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T. Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S. Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A. Victor, Martin P. Paulus, Kristen E. Savage, Jennifer L. Benbow, Emma S. Spielfogel, Cheryl A. M. Anderson, Maria Elena Martinez, James V. Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A. Gilbert, Daniel A. Sweeney, Sarah M. Allard, Austin D. Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R. Klatt, Jeff Hasty, Olivier Berteau, Aaron F. Carlin, Jeffrey D. Esko, Nathan E. Lewis, Rob Knight
Format: Article
Language:English
Published: American Society for Microbiology 2025-04-01
Series:mBio
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mbio.04015-24
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849701284513316864
author Cameron Martino
Benjamin P. Kellman
Daniel R. Sandoval
Thomas Mandel Clausen
Robert Cooper
Alhosna Benjdia
Feryel Soualmia
Alex E. Clark
Aaron F. Garretson
Clarisse A. Marotz
Se Jin Song
Stephen Wandro
Livia S. Zaramela
Rodolfo A. Salido
Qiyun Zhu
Erick Armingol
Yoshiki Vázquez-Baeza
Daniel McDonald
James T. Sorrentino
Bryn Taylor
Pedro Belda-Ferre
Promi Das
Farhana Ali
Chenguang Liang
Yujie Zhang
Luca Schifanella
Alice Covizzi
Alessia Lai
Agostino Riva
Christopher Basting
Courtney Ann Broedlow
Aki S. Havulinna
Pekka Jousilahti
Mehrbod Estaki
Tomasz Kosciolek
Rayus Kuplicki
Teresa A. Victor
Martin P. Paulus
Kristen E. Savage
Jennifer L. Benbow
Emma S. Spielfogel
Cheryl A. M. Anderson
Maria Elena Martinez
James V. Lacey
Shi Huang
Niina Haiminen
Laxmi Parida
Ho-Cheol Kim
Jack A. Gilbert
Daniel A. Sweeney
Sarah M. Allard
Austin D. Swafford
Susan Cheng
Michael Inouye
Teemu Niiranen
Mohit Jain
Veikko Salomaa
Karsten Zengler
Nichole R. Klatt
Jeff Hasty
Olivier Berteau
Aaron F. Carlin
Jeffrey D. Esko
Nathan E. Lewis
Rob Knight
author_facet Cameron Martino
Benjamin P. Kellman
Daniel R. Sandoval
Thomas Mandel Clausen
Robert Cooper
Alhosna Benjdia
Feryel Soualmia
Alex E. Clark
Aaron F. Garretson
Clarisse A. Marotz
Se Jin Song
Stephen Wandro
Livia S. Zaramela
Rodolfo A. Salido
Qiyun Zhu
Erick Armingol
Yoshiki Vázquez-Baeza
Daniel McDonald
James T. Sorrentino
Bryn Taylor
Pedro Belda-Ferre
Promi Das
Farhana Ali
Chenguang Liang
Yujie Zhang
Luca Schifanella
Alice Covizzi
Alessia Lai
Agostino Riva
Christopher Basting
Courtney Ann Broedlow
Aki S. Havulinna
Pekka Jousilahti
Mehrbod Estaki
Tomasz Kosciolek
Rayus Kuplicki
Teresa A. Victor
Martin P. Paulus
Kristen E. Savage
Jennifer L. Benbow
Emma S. Spielfogel
Cheryl A. M. Anderson
Maria Elena Martinez
James V. Lacey
Shi Huang
Niina Haiminen
Laxmi Parida
Ho-Cheol Kim
Jack A. Gilbert
Daniel A. Sweeney
Sarah M. Allard
Austin D. Swafford
Susan Cheng
Michael Inouye
Teemu Niiranen
Mohit Jain
Veikko Salomaa
Karsten Zengler
Nichole R. Klatt
Jeff Hasty
Olivier Berteau
Aaron F. Carlin
Jeffrey D. Esko
Nathan E. Lewis
Rob Knight
author_sort Cameron Martino
collection DOAJ
description ABSTRACT The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract’s glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2’s spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.
format Article
id doaj-art-f8933efd76b74a03a865e37d15ee0fb9
institution DOAJ
issn 2150-7511
language English
publishDate 2025-04-01
publisher American Society for Microbiology
record_format Article
series mBio
spelling doaj-art-f8933efd76b74a03a865e37d15ee0fb92025-08-20T03:17:58ZengAmerican Society for MicrobiologymBio2150-75112025-04-0116410.1128/mbio.04015-24SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyxCameron Martino0Benjamin P. Kellman1Daniel R. Sandoval2Thomas Mandel Clausen3Robert Cooper4Alhosna Benjdia5Feryel Soualmia6Alex E. Clark7Aaron F. Garretson8Clarisse A. Marotz9Se Jin Song10Stephen Wandro11Livia S. Zaramela12Rodolfo A. Salido13Qiyun Zhu14Erick Armingol15Yoshiki Vázquez-Baeza16Daniel McDonald17James T. Sorrentino18Bryn Taylor19Pedro Belda-Ferre20Promi Das21Farhana Ali22Chenguang Liang23Yujie Zhang24Luca Schifanella25Alice Covizzi26Alessia Lai27Agostino Riva28Christopher Basting29Courtney Ann Broedlow30Aki S. Havulinna31Pekka Jousilahti32Mehrbod Estaki33Tomasz Kosciolek34Rayus Kuplicki35Teresa A. Victor36Martin P. Paulus37Kristen E. Savage38Jennifer L. Benbow39Emma S. Spielfogel40Cheryl A. M. Anderson41Maria Elena Martinez42James V. Lacey43Shi Huang44Niina Haiminen45Laxmi Parida46Ho-Cheol Kim47Jack A. Gilbert48Daniel A. Sweeney49Sarah M. Allard50Austin D. Swafford51Susan Cheng52Michael Inouye53Teemu Niiranen54Mohit Jain55Veikko Salomaa56Karsten Zengler57Nichole R. Klatt58Jeff Hasty59Olivier Berteau60Aaron F. Carlin61Jeffrey D. Esko62Nathan E. Lewis63Rob Knight64Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USADepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USADepartment of Bioengineering, University of California San Diego, La Jolla, California, USAUniversité Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, FranceUniversité Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, FranceDepartment of Medicine, University of California San Diego, La Jolla, California, USADepartment of Medicine, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USACenter for Microbiome Innovation, University of California San Diego, La Jolla, California, USACenter for Microbiome Innovation, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USACenter for Microbiome Innovation, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USABiomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Bioengineering, University of California San Diego, La Jolla, California, USADepartment of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USADepartment of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, ItalyDepartment of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, ItalyDepartment of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, ItalyDepartment of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USADepartment of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USADepartment of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, FinlandDepartment of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, FinlandDepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USALaureate Institute for Brain Research, Tulsa, Oklahoma, USALaureate Institute for Brain Research, Tulsa, Oklahoma, USALaureate Institute for Brain Research, Tulsa, Oklahoma, USADivision of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USADivision of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USADivision of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USAHerbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USAHerbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USADivision of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USAIBM T. J. Watson Research Center, Yorktown Heights, New York, USAIBM T. J. Watson Research Center, Yorktown Heights, New York, USAAI and Cognitive Software, IBM Research-Almaden, San Jose, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USACenter for Microbiome Innovation, University of California San Diego, La Jolla, California, USADivision of Cardiology, Brigham and Women’s Hospital, Boston, Massachusetts, USAHealth Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United KingdomDepartment of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, FinlandDepartment of Pharmacology, University of California, San Diego, La Jolla, California, USADepartment of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, FinlandDepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USADepartment of Bioengineering, University of California San Diego, La Jolla, California, USAUniversité Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, FranceDepartment of Medicine, University of California San Diego, La Jolla, California, USADepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USADepartment of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USAABSTRACT The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract’s glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2’s spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.https://journals.asm.org/doi/10.1128/mbio.04015-24SARS-CoV-2Covidhuman microbiomeagingHeparan Sulfate
spellingShingle Cameron Martino
Benjamin P. Kellman
Daniel R. Sandoval
Thomas Mandel Clausen
Robert Cooper
Alhosna Benjdia
Feryel Soualmia
Alex E. Clark
Aaron F. Garretson
Clarisse A. Marotz
Se Jin Song
Stephen Wandro
Livia S. Zaramela
Rodolfo A. Salido
Qiyun Zhu
Erick Armingol
Yoshiki Vázquez-Baeza
Daniel McDonald
James T. Sorrentino
Bryn Taylor
Pedro Belda-Ferre
Promi Das
Farhana Ali
Chenguang Liang
Yujie Zhang
Luca Schifanella
Alice Covizzi
Alessia Lai
Agostino Riva
Christopher Basting
Courtney Ann Broedlow
Aki S. Havulinna
Pekka Jousilahti
Mehrbod Estaki
Tomasz Kosciolek
Rayus Kuplicki
Teresa A. Victor
Martin P. Paulus
Kristen E. Savage
Jennifer L. Benbow
Emma S. Spielfogel
Cheryl A. M. Anderson
Maria Elena Martinez
James V. Lacey
Shi Huang
Niina Haiminen
Laxmi Parida
Ho-Cheol Kim
Jack A. Gilbert
Daniel A. Sweeney
Sarah M. Allard
Austin D. Swafford
Susan Cheng
Michael Inouye
Teemu Niiranen
Mohit Jain
Veikko Salomaa
Karsten Zengler
Nichole R. Klatt
Jeff Hasty
Olivier Berteau
Aaron F. Carlin
Jeffrey D. Esko
Nathan E. Lewis
Rob Knight
SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
mBio
SARS-CoV-2
Covid
human microbiome
aging
Heparan Sulfate
title SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
title_full SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
title_fullStr SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
title_full_unstemmed SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
title_short SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx
title_sort sars cov 2 infectivity can be modulated through bacterial grooming of the glycocalyx
topic SARS-CoV-2
Covid
human microbiome
aging
Heparan Sulfate
url https://journals.asm.org/doi/10.1128/mbio.04015-24
work_keys_str_mv AT cameronmartino sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT benjaminpkellman sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT danielrsandoval sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT thomasmandelclausen sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT robertcooper sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT alhosnabenjdia sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT feryelsoualmia sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT alexeclark sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT aaronfgarretson sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT clarisseamarotz sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT sejinsong sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT stephenwandro sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT liviaszaramela sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT rodolfoasalido sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT qiyunzhu sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT erickarmingol sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT yoshikivazquezbaeza sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT danielmcdonald sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jamestsorrentino sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT bryntaylor sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT pedrobeldaferre sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT promidas sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT farhanaali sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT chenguangliang sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT yujiezhang sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT lucaschifanella sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT alicecovizzi sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT alessialai sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT agostinoriva sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT christopherbasting sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT courtneyannbroedlow sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT akishavulinna sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT pekkajousilahti sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT mehrbodestaki sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT tomaszkosciolek sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT rayuskuplicki sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT teresaavictor sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT martinppaulus sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT kristenesavage sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jenniferlbenbow sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT emmasspielfogel sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT cherylamanderson sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT mariaelenamartinez sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jamesvlacey sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT shihuang sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT niinahaiminen sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT laxmiparida sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT hocheolkim sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jackagilbert sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT danielasweeney sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT sarahmallard sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT austindswafford sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT susancheng sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT michaelinouye sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT teemuniiranen sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT mohitjain sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT veikkosalomaa sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT karstenzengler sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT nicholerklatt sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jeffhasty sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT olivierberteau sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT aaronfcarlin sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT jeffreydesko sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT nathanelewis sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx
AT robknight sarscov2infectivitycanbemodulatedthroughbacterialgroomingoftheglycocalyx