Adaptable Bandwidth for Harmonic Step-Frequency Radar

A spectrum sensing technique is described which is used to enhance the performance of harmonic step-frequency radar in the presence of harmful radio frequency (RF) interference (RFI). This technique passively monitors the RF spectrum for subbands of high signal-to-interference-plus-noise ratio (SINR...

Full description

Saved in:
Bibliographic Details
Main Authors: Anthony F. Martone, Kyle A. Gallagher, Kelly D. Sherbondy, Kenneth I. Ranney, Traian V. Dogaru, Gregory J. Mazzaro, Ram M. Narayanan
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/808093
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spectrum sensing technique is described which is used to enhance the performance of harmonic step-frequency radar in the presence of harmful radio frequency (RF) interference (RFI). This technique passively monitors the RF spectrum for subbands of high signal-to-interference-plus-noise ratio (SINR) within a constrained bandwidth of interest. An optimal subband is selected for the harmonic radar that maximizes SINR and minimizes the range resolution cell size, two conflicting objectives. The approach is tested using an experimental setup that injects high power RFI into a harmonic step-frequency radar, which significantly degrades radar performance. It is shown that the proposed spectrum sensing technique significantly improves the SINR and the peak-to-average sidelobe power level of the harmonic radar at the sacrifice of range resolution.
ISSN:1687-5869
1687-5877