Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration

Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Bysani Chandrasekar, Srinivas Mummidi, Vincent G. DeMarco, Yusuke Higashi
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2023/6112301
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559598238695424
author Bysani Chandrasekar
Srinivas Mummidi
Vincent G. DeMarco
Yusuke Higashi
author_facet Bysani Chandrasekar
Srinivas Mummidi
Vincent G. DeMarco
Yusuke Higashi
author_sort Bysani Chandrasekar
collection DOAJ
description Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
format Article
id doaj-art-f844dea7a53349e5bf853b4405db9a28
institution Kabale University
issn 1466-1861
language English
publishDate 2023-01-01
publisher Wiley
record_format Article
series Mediators of Inflammation
spelling doaj-art-f844dea7a53349e5bf853b4405db9a282025-02-03T01:29:41ZengWileyMediators of Inflammation1466-18612023-01-01202310.1155/2023/6112301Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and MigrationBysani Chandrasekar0Srinivas Mummidi1Vincent G. DeMarco2Yusuke Higashi3Research ServiceLife SciencesResearch ServiceMedicine/CardiologyPersistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.http://dx.doi.org/10.1155/2023/6112301
spellingShingle Bysani Chandrasekar
Srinivas Mummidi
Vincent G. DeMarco
Yusuke Higashi
Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
Mediators of Inflammation
title Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
title_full Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
title_fullStr Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
title_full_unstemmed Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
title_short Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration
title_sort empagliflozin reverses oxidized ldl induced reck suppression cardiotrophin 1 expression mmp activation and human aortic smooth muscle cell proliferation and migration
url http://dx.doi.org/10.1155/2023/6112301
work_keys_str_mv AT bysanichandrasekar empagliflozinreversesoxidizedldlinducedrecksuppressioncardiotrophin1expressionmmpactivationandhumanaorticsmoothmusclecellproliferationandmigration
AT srinivasmummidi empagliflozinreversesoxidizedldlinducedrecksuppressioncardiotrophin1expressionmmpactivationandhumanaorticsmoothmusclecellproliferationandmigration
AT vincentgdemarco empagliflozinreversesoxidizedldlinducedrecksuppressioncardiotrophin1expressionmmpactivationandhumanaorticsmoothmusclecellproliferationandmigration
AT yusukehigashi empagliflozinreversesoxidizedldlinducedrecksuppressioncardiotrophin1expressionmmpactivationandhumanaorticsmoothmusclecellproliferationandmigration