A Genetic Simulated Annealing Algorithm to Optimize the Small-World Network Generating Process
Network structure is an important component of analysis in many parts of the natural and social sciences. Optimization of network structure in order to achieve specific goals has been a major research focus. The small-world network is known to have a high average clustering coefficient and a low ave...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2018/1453898 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Network structure is an important component of analysis in many parts of the natural and social sciences. Optimization of network structure in order to achieve specific goals has been a major research focus. The small-world network is known to have a high average clustering coefficient and a low average path length. Previous studies have introduced a series of models to generate small-world networks, but few focus on how to improve the efficiency of the generating process. In this paper, we propose a genetic simulated annealing (GSA) algorithm to improve the efficiency of transforming other kinds of networks into small-world networks by adding edges, and we apply this algorithm to some experimental systems. In the process of using the GSA algorithm, the existence of hubs and disassortative structure is revealed. |
---|---|
ISSN: | 1076-2787 1099-0526 |