Analytical simulations for rate type nanomaterial stretching flow with dual convection

Owing to high thermal performances and stable properties, multiple applications of nanomaterials have been studied in different industrial and engineering processes. Ongoing continuous research in nanofluid suggested different applications of nanomaterials in catalysis, aerospace engineering, oil in...

Full description

Saved in:
Bibliographic Details
Main Authors: Manzoor Ahmad, Sami Ullah Khan, Syeda Quratulain, Adnan, M. Waqas, Hakim AL Garalleh, Nurnadiah Zamri, Dilsora Abduvalieva, Manish Gupta
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Partial Differential Equations in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666818125000099
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Owing to high thermal performances and stable properties, multiple applications of nanomaterials have been studied in different industrial and engineering processes. Ongoing continuous research in nanofluid suggested different applications of nanomaterials in catalysis, aerospace engineering, oil industry, various optical devices, medical imaging etc. The objective for exploring current investigation is to disclose the thermal impact of Oldroyd-B nanofluid comprising the buoyancy driven flow. The heat and mass transfer analysis is predicted with insight of Brownian motion and thermophoresis phenomenon. The flow is subject to bidirectional surface maintaining the uniform velocity. The zero-mass constraints are utilized for analyzing the flow phenomenon. The analytical treatment is suggested regarding the computations of developed system. Fundamental of thermal transport phenomenon are suggested with physical aspects. It is observed that velocity profile enhances with applications of buoyancy forces. The temperature profile reduces due to velocity ratio parameter. Current results present applications in cooling processes, thermal management devices, heating control, extrusion processes, chemical systems etc.
ISSN:2666-8181