Finite volume expectation values in the sine-Gordon model

Abstract Using the fermionic basis discovered in the 6-vertex model, we derive exact formulas for the expectation values of local operators of the sine-Gordon theory in any eigenstate of the Hamiltonian. We tested our formulas in the pure multi-soliton sector of the theory. In the ultraviolet limit,...

Full description

Saved in:
Bibliographic Details
Main Author: Árpád Hegedűs
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2020)122
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586169154535424
author Árpád Hegedűs
author_facet Árpád Hegedűs
author_sort Árpád Hegedűs
collection DOAJ
description Abstract Using the fermionic basis discovered in the 6-vertex model, we derive exact formulas for the expectation values of local operators of the sine-Gordon theory in any eigenstate of the Hamiltonian. We tested our formulas in the pure multi-soliton sector of the theory. In the ultraviolet limit, we checked our results against Liouville 3-point functions, while in the infrared limit, we evaluated our formulas in the semi-classical limit and compared them up to 2-particle contributions against the semi-classical limit of the previously conjectured LeClair-Mussardo type formula. Complete agreement was found in both cases.
format Article
id doaj-art-f7a3e54781c94442a359d49395bb98cd
institution Kabale University
issn 1029-8479
language English
publishDate 2020-01-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj-art-f7a3e54781c94442a359d49395bb98cd2025-01-26T12:11:41ZengSpringerOpenJournal of High Energy Physics1029-84792020-01-012020113810.1007/JHEP01(2020)122Finite volume expectation values in the sine-Gordon modelÁrpád Hegedűs0Wigner Research Centre for PhysicsAbstract Using the fermionic basis discovered in the 6-vertex model, we derive exact formulas for the expectation values of local operators of the sine-Gordon theory in any eigenstate of the Hamiltonian. We tested our formulas in the pure multi-soliton sector of the theory. In the ultraviolet limit, we checked our results against Liouville 3-point functions, while in the infrared limit, we evaluated our formulas in the semi-classical limit and compared them up to 2-particle contributions against the semi-classical limit of the previously conjectured LeClair-Mussardo type formula. Complete agreement was found in both cases.https://doi.org/10.1007/JHEP01(2020)122Bethe AnsatzIntegrable Field Theories
spellingShingle Árpád Hegedűs
Finite volume expectation values in the sine-Gordon model
Journal of High Energy Physics
Bethe Ansatz
Integrable Field Theories
title Finite volume expectation values in the sine-Gordon model
title_full Finite volume expectation values in the sine-Gordon model
title_fullStr Finite volume expectation values in the sine-Gordon model
title_full_unstemmed Finite volume expectation values in the sine-Gordon model
title_short Finite volume expectation values in the sine-Gordon model
title_sort finite volume expectation values in the sine gordon model
topic Bethe Ansatz
Integrable Field Theories
url https://doi.org/10.1007/JHEP01(2020)122
work_keys_str_mv AT arpadhegedus finitevolumeexpectationvaluesinthesinegordonmodel