Effects of Xylanase Pretreatment on the Quality of Refiner Mechanical Mulberry Branch Fibers

We performed xylanase pretreatment prior to mechanical refining in the production of mulberry branch fibers, with the objective of saving energy and studying the effects of such pretreatment on the quality of the fibers. To determine the effects of the enzyme action, we analyzed the energy required...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenjuan Tao, Lifang Guo, Aojie Meng, Lizhen Wang, Hao Ren, Huamin Zhai
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2019/6252013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We performed xylanase pretreatment prior to mechanical refining in the production of mulberry branch fibers, with the objective of saving energy and studying the effects of such pretreatment on the quality of the fibers. To determine the effects of the enzyme action, we analyzed the energy required for refining, related yield, and the dimension, deformation, and morphology of the fibers. We found that, with the xylanase pretreatment, the refining energy was reduced by 4%, with the yield of fibers being maintained at >85%. In addition, the fiber bundles were defibered further, resulting in reduced average length of the fiber. Furthermore, the fiber widths increased because of the improved swelling effect of the xylanase pretreatment. However, in some instances, the fine elements were reduced. With a low enzyme dosage, the fiber coarseness decreased remarkably and, because of the swelling and softening effects of the xylanase pretreatment on the mulberry branches, the fiber kink ratios and curl were reduced. Additionally, the mulberry branch tissue was loosened, facilitating fiber separation. In view of these findings, the biomechanical process could be a potentially green and efficient process for the manufacturing of mulberry branch fibers.
ISSN:0730-6679
1098-2329