Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors

<p>Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. We trained a random forest machine learning model to predict snow depth from variability in snow–ground interface temperature. The model performed well on A...

Full description

Saved in:
Bibliographic Details
Main Authors: C. L. Bachand, C. Wang, B. Dafflon, L. N. Thomas, I. Shirley, S. Maebius, C. M. Iversen, K. E. Bennett
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/19/393/2025/tc-19-393-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583553729167360
author C. L. Bachand
C. L. Bachand
C. Wang
B. Dafflon
L. N. Thomas
L. N. Thomas
I. Shirley
S. Maebius
S. Maebius
C. M. Iversen
K. E. Bennett
author_facet C. L. Bachand
C. L. Bachand
C. Wang
B. Dafflon
L. N. Thomas
L. N. Thomas
I. Shirley
S. Maebius
S. Maebius
C. M. Iversen
K. E. Bennett
author_sort C. L. Bachand
collection DOAJ
description <p>Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. We trained a random forest machine learning model to predict snow depth from variability in snow–ground interface temperature. The model performed well on Alaska's Seward Peninsula where it was trained and at Arctic evaluation sites (RMSE <span class="inline-formula">≤</span> 0.15 m). It performed poorly at temperate sites with deeper snowpacks, partially due to training data limitations. Small temperature sensors are cheap and easy to deploy, so this technique enables spatially distributed and temporally continuous snowpack monitoring at high latitudes to an extent previously infeasible.</p>
format Article
id doaj-art-f74629250b074837b7c459608df4e1c7
institution Kabale University
issn 1994-0416
1994-0424
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj-art-f74629250b074837b7c459608df4e1c72025-01-28T11:51:14ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242025-01-011939340010.5194/tc-19-393-2025Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensorsC. L. Bachand0C. L. Bachand1C. Wang2B. Dafflon3L. N. Thomas4L. N. Thomas5I. Shirley6S. Maebius7S. Maebius8C. M. Iversen9K. E. Bennett10Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USADepartment of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USAEarth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USAEarth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USADepartment of Geography, University of Colorado Boulder, Boulder, CO, USAEarth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USAEarth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USADepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USAEnvironmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USAEarth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA<p>Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. We trained a random forest machine learning model to predict snow depth from variability in snow–ground interface temperature. The model performed well on Alaska's Seward Peninsula where it was trained and at Arctic evaluation sites (RMSE <span class="inline-formula">≤</span> 0.15 m). It performed poorly at temperate sites with deeper snowpacks, partially due to training data limitations. Small temperature sensors are cheap and easy to deploy, so this technique enables spatially distributed and temporally continuous snowpack monitoring at high latitudes to an extent previously infeasible.</p>https://tc.copernicus.org/articles/19/393/2025/tc-19-393-2025.pdf
spellingShingle C. L. Bachand
C. L. Bachand
C. Wang
B. Dafflon
L. N. Thomas
L. N. Thomas
I. Shirley
S. Maebius
S. Maebius
C. M. Iversen
K. E. Bennett
Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
The Cryosphere
title Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
title_full Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
title_fullStr Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
title_full_unstemmed Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
title_short Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
title_sort brief communication monitoring snow depth using small cheap and easy to deploy snow ground interface temperature sensors
url https://tc.copernicus.org/articles/19/393/2025/tc-19-393-2025.pdf
work_keys_str_mv AT clbachand briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT clbachand briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT cwang briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT bdafflon briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT lnthomas briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT lnthomas briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT ishirley briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT smaebius briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT smaebius briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT cmiversen briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors
AT kebennett briefcommunicationmonitoringsnowdepthusingsmallcheapandeasytodeploysnowgroundinterfacetemperaturesensors