Modelling spectra of hot alkali vapour in the saturation regime

Laser spectroscopy of hot atomic vapours has been studied extensively. Theoretical models that predict the absolute value of the electric susceptibility are crucial for optimising the design of photonic devices that use hot vapours, and for extracting parameters, such as external fields, when these...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel R Häupl, Clare R Higgins, Danielle Pizzey, Jack D Briscoe, Steven A Wrathmall, Ifan G Hughes, Robert Löw, Nicolas Y Joly
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/adb77c
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser spectroscopy of hot atomic vapours has been studied extensively. Theoretical models that predict the absolute value of the electric susceptibility are crucial for optimising the design of photonic devices that use hot vapours, and for extracting parameters, such as external fields, when these devices are used as sensors. To date, most of the models developed have been restricted to the weak-probe regime. However, fulfilling the weak-probe power constraint may not always be easy, desired or necessary. Here we present a model for simulating the spectra of alkali-metal vapours for a variety of experimental parameters, most distinctly at intensities beyond weak laser fields. The model incorporates optical pumping effects and transit-time broadening. We test the performance of the model by performing spectroscopy of ^87 Rb in a magnetic field of 0.6 T, where isolated atomic resonances can be addressed. We find very good agreement between the model and data for three different beam diameters and a variation of intensity of over five orders of magnitude. The non-overlapping absorption lines allow us to differentiate the saturation behaviour of open and closed transitions. While our model was only experimentally verified for the D2 line of rubidium, the software is also capable of simulating spectra of rubidium, sodium, potassium and caesium over both D lines.
ISSN:1367-2630