Coassociative grammar, periodic orbits, and quantum random walk over ℤ

Inspired by a work of Joni and Rota, we show that the combinatorics generated by a quantisation of the Bernoulli random walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod⁡1, x∈[0,...

Full description

Saved in:
Bibliographic Details
Main Author: Philippe Leroux
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.3979
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551573037776896
author Philippe Leroux
author_facet Philippe Leroux
author_sort Philippe Leroux
collection DOAJ
description Inspired by a work of Joni and Rota, we show that the combinatorics generated by a quantisation of the Bernoulli random walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod⁡1, x∈[0,1], are also given.
format Article
id doaj-art-f6f1f989282e434bb59cc5fa43cc7bc9
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-f6f1f989282e434bb59cc5fa43cc7bc92025-02-03T06:01:14ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-012005243979399610.1155/IJMMS.2005.3979Coassociative grammar, periodic orbits, and quantum random walk over ℤPhilippe Leroux0Institut de Recherche Mathématique, Université de Rennes I and CNRS UMR 6625, Campus de Beaulieu, Rennes Cedex 35042, FranceInspired by a work of Joni and Rota, we show that the combinatorics generated by a quantisation of the Bernoulli random walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod⁡1, x∈[0,1], are also given.http://dx.doi.org/10.1155/IJMMS.2005.3979
spellingShingle Philippe Leroux
Coassociative grammar, periodic orbits, and quantum random walk over ℤ
International Journal of Mathematics and Mathematical Sciences
title Coassociative grammar, periodic orbits, and quantum random walk over ℤ
title_full Coassociative grammar, periodic orbits, and quantum random walk over ℤ
title_fullStr Coassociative grammar, periodic orbits, and quantum random walk over ℤ
title_full_unstemmed Coassociative grammar, periodic orbits, and quantum random walk over ℤ
title_short Coassociative grammar, periodic orbits, and quantum random walk over ℤ
title_sort coassociative grammar periodic orbits and quantum random walk over z
url http://dx.doi.org/10.1155/IJMMS.2005.3979
work_keys_str_mv AT philippeleroux coassociativegrammarperiodicorbitsandquantumrandomwalkoverz