On the Maximum Estrada Index of 3-Uniform Linear Hypertrees

For a simple hypergraph H on n vertices, its Estrada index is defined as EE(H)=∑i=1n‍eλi, where λ1,λ2,…,λn are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.

Saved in:
Bibliographic Details
Main Authors: Faxu Li, Liang Wei, Jinde Cao, Feng Hu, Haixing Zhao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/637865
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560457952526336
author Faxu Li
Liang Wei
Jinde Cao
Feng Hu
Haixing Zhao
author_facet Faxu Li
Liang Wei
Jinde Cao
Feng Hu
Haixing Zhao
author_sort Faxu Li
collection DOAJ
description For a simple hypergraph H on n vertices, its Estrada index is defined as EE(H)=∑i=1n‍eλi, where λ1,λ2,…,λn are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.
format Article
id doaj-art-f6ed53a76b424fdb986d935a920dfe97
institution Kabale University
issn 2356-6140
1537-744X
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series The Scientific World Journal
spelling doaj-art-f6ed53a76b424fdb986d935a920dfe972025-02-03T01:27:34ZengWileyThe Scientific World Journal2356-61401537-744X2014-01-01201410.1155/2014/637865637865On the Maximum Estrada Index of 3-Uniform Linear HypertreesFaxu Li0Liang Wei1Jinde Cao2Feng Hu3Haixing Zhao4School of Computer Science, Shaanxi Normal University, Xi’an 710062, ChinaDepartment of Mathematics, Qinghai Normal University, Xining 810008, ChinaDepartment of Mathematics, Southeast University, Nanjing 210096, ChinaSchool of Computer Science, Shaanxi Normal University, Xi’an 710062, ChinaCollege of Computer, Qinghai Normal University, Xining 810008, ChinaFor a simple hypergraph H on n vertices, its Estrada index is defined as EE(H)=∑i=1n‍eλi, where λ1,λ2,…,λn are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.http://dx.doi.org/10.1155/2014/637865
spellingShingle Faxu Li
Liang Wei
Jinde Cao
Feng Hu
Haixing Zhao
On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
The Scientific World Journal
title On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
title_full On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
title_fullStr On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
title_full_unstemmed On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
title_short On the Maximum Estrada Index of 3-Uniform Linear Hypertrees
title_sort on the maximum estrada index of 3 uniform linear hypertrees
url http://dx.doi.org/10.1155/2014/637865
work_keys_str_mv AT faxuli onthemaximumestradaindexof3uniformlinearhypertrees
AT liangwei onthemaximumestradaindexof3uniformlinearhypertrees
AT jindecao onthemaximumestradaindexof3uniformlinearhypertrees
AT fenghu onthemaximumestradaindexof3uniformlinearhypertrees
AT haixingzhao onthemaximumestradaindexof3uniformlinearhypertrees