DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography

Attention Deficit Hyperactivity Disorder (ADHD) diagnosis is often challenging due to subjective assessments and symptom variability, which can delay accurate detection and treatment. To address these limitations, this study introduces DETEC-ADHD, a web-based application that combines machine learni...

Full description

Saved in:
Bibliographic Details
Main Authors: Ismael Santarrosa-López, Giner Alor-Hernández, Maritza Bustos-López, Jonathan Hernández-Capistrán, Laura Nely Sánchez-Morales, José Luis Sánchez-Cervantes, Humberto Marín-Vega
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Big Data and Cognitive Computing
Subjects:
Online Access:https://www.mdpi.com/2504-2289/9/1/3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589155740155904
author Ismael Santarrosa-López
Giner Alor-Hernández
Maritza Bustos-López
Jonathan Hernández-Capistrán
Laura Nely Sánchez-Morales
José Luis Sánchez-Cervantes
Humberto Marín-Vega
author_facet Ismael Santarrosa-López
Giner Alor-Hernández
Maritza Bustos-López
Jonathan Hernández-Capistrán
Laura Nely Sánchez-Morales
José Luis Sánchez-Cervantes
Humberto Marín-Vega
author_sort Ismael Santarrosa-López
collection DOAJ
description Attention Deficit Hyperactivity Disorder (ADHD) diagnosis is often challenging due to subjective assessments and symptom variability, which can delay accurate detection and treatment. To address these limitations, this study introduces DETEC-ADHD, a web-based application that combines machine learning (ML) techniques with multi-source data to enhance diagnostic accuracy. Unlike traditional approaches, DETEC-ADHD primarily utilizes extensive personal, medical, and psychological information for its initial classification. DETEC-ADHD further refines diagnoses by identifying ADHD subtypes (inattentive, hyperactive, combined) through theta/beta wave ratio analysis from EEG data, offering neurophysiological insights that complement its classification process. Logistic Regression, selected for its validated accuracy and reliability, served as the ML model for the app. The case studies demonstrated DETEC-ADHD’s effectiveness, achieving 100% accuracy in children and 90% in adults. By integrating diverse data sources with real-time EEG analysis, DETEC-ADHD provides a scalable, cost-effective, and accessible solution for ADHD detection and subtype identification, addressing diagnostic challenges and supporting healthcare providers, particularly in resource-limited environments.
format Article
id doaj-art-f6b1a6c7f005487b9d4eac3a22981634
institution Kabale University
issn 2504-2289
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Big Data and Cognitive Computing
spelling doaj-art-f6b1a6c7f005487b9d4eac3a229816342025-01-24T13:22:31ZengMDPI AGBig Data and Cognitive Computing2504-22892024-12-0191310.3390/bdcc9010003DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and ElectroencephalographyIsmael Santarrosa-López0Giner Alor-Hernández1Maritza Bustos-López2Jonathan Hernández-Capistrán3Laura Nely Sánchez-Morales4José Luis Sánchez-Cervantes5Humberto Marín-Vega6Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoTecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoTecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoTecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoCONACYT-Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoTecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoTecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9, No. 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, MexicoAttention Deficit Hyperactivity Disorder (ADHD) diagnosis is often challenging due to subjective assessments and symptom variability, which can delay accurate detection and treatment. To address these limitations, this study introduces DETEC-ADHD, a web-based application that combines machine learning (ML) techniques with multi-source data to enhance diagnostic accuracy. Unlike traditional approaches, DETEC-ADHD primarily utilizes extensive personal, medical, and psychological information for its initial classification. DETEC-ADHD further refines diagnoses by identifying ADHD subtypes (inattentive, hyperactive, combined) through theta/beta wave ratio analysis from EEG data, offering neurophysiological insights that complement its classification process. Logistic Regression, selected for its validated accuracy and reliability, served as the ML model for the app. The case studies demonstrated DETEC-ADHD’s effectiveness, achieving 100% accuracy in children and 90% in adults. By integrating diverse data sources with real-time EEG analysis, DETEC-ADHD provides a scalable, cost-effective, and accessible solution for ADHD detection and subtype identification, addressing diagnostic challenges and supporting healthcare providers, particularly in resource-limited environments.https://www.mdpi.com/2504-2289/9/1/3ADHDEEGmachine learningneurofeedbackwearables
spellingShingle Ismael Santarrosa-López
Giner Alor-Hernández
Maritza Bustos-López
Jonathan Hernández-Capistrán
Laura Nely Sánchez-Morales
José Luis Sánchez-Cervantes
Humberto Marín-Vega
DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
Big Data and Cognitive Computing
ADHD
EEG
machine learning
neurofeedback
wearables
title DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
title_full DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
title_fullStr DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
title_full_unstemmed DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
title_short DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine Learning and Electroencephalography
title_sort detec adhd a data driven web app for early adhd detection using machine learning and electroencephalography
topic ADHD
EEG
machine learning
neurofeedback
wearables
url https://www.mdpi.com/2504-2289/9/1/3
work_keys_str_mv AT ismaelsantarrosalopez detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT gineralorhernandez detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT maritzabustoslopez detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT jonathanhernandezcapistran detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT lauranelysanchezmorales detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT joseluissanchezcervantes detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography
AT humbertomarinvega detecadhdadatadrivenwebappforearlyadhddetectionusingmachinelearningandelectroencephalography