Chiral Phase Transition in Linear Sigma Model with Nonextensive Statistical Mechanics

From the nonextensive statistical mechanics, we investigate the chiral phase transition at finite temperature T and baryon chemical potential μB in the framework of the linear sigma model. The corresponding nonextensive distribution, based on Tsallis’ statistics, is characterized by a dimensionless...

Full description

Saved in:
Bibliographic Details
Main Authors: Ke-Ming Shen, Hui Zhang, De-Fu Hou, Ben-Wei Zhang, En-Ke Wang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2017/4135329
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:From the nonextensive statistical mechanics, we investigate the chiral phase transition at finite temperature T and baryon chemical potential μB in the framework of the linear sigma model. The corresponding nonextensive distribution, based on Tsallis’ statistics, is characterized by a dimensionless nonextensive parameter, q, and the results in the usual Boltzmann-Gibbs case are recovered when q→1. The thermodynamics of the linear sigma model and its corresponding phase diagram are analysed. At high temperature region, the critical temperature Tc is shown to decrease with increasing q from the phase diagram in the (T,μ) plane. However, larger values of q cause the rise of Tc at low temperature but high chemical potential. Moreover, it is found that μ different from zero corresponds to a first-order phase transition while μ=0 to a crossover one. The critical endpoint (CEP) carries higher chemical potential but lower temperature with q increasing due to the nonextensive effects.
ISSN:1687-7357
1687-7365