Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach

An evolutionary algorithm was employed to locate the global minimum of TiO2n nanoparticles with n=2–20. More than 61,000 structures were calculated with a semiempirical method and reoptimized using density functional theory. The exciton binding energy of TiO2 nanoparticles was determined through the...

Full description

Saved in:
Bibliographic Details
Main Authors: Oscar Olvera-Neria, Raúl García-Cruz, Julio Gonzalez-Torres, Luz María García-Cruz, Jean Luis Castillo-Sánchez, Enrique Poulain
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2024/4014216
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850162908186542080
author Oscar Olvera-Neria
Raúl García-Cruz
Julio Gonzalez-Torres
Luz María García-Cruz
Jean Luis Castillo-Sánchez
Enrique Poulain
author_facet Oscar Olvera-Neria
Raúl García-Cruz
Julio Gonzalez-Torres
Luz María García-Cruz
Jean Luis Castillo-Sánchez
Enrique Poulain
author_sort Oscar Olvera-Neria
collection DOAJ
description An evolutionary algorithm was employed to locate the global minimum of TiO2n nanoparticles with n=2–20. More than 61,000 structures were calculated with a semiempirical method and reoptimized using density functional theory. The exciton binding energy of TiO2 nanoparticles was determined through the fundamental and optical band gap. Frenkel exciton energy scales as EB eV=8.07/n0.85, resulting in strongly bound excitons of 0.132–1.2 eV for about 1.4 nm nanoparticles. Although the exciton energy decreases with the system size, these tightly bound Frenkel excitons inhibit the separation of photogenerated charge carriers, making their application in photocatalysis and photovoltaic devices difficult, and imposing a minimum particle size. In contrast, the exciton binding energy of rutile is 4 meV, where the Wannier exciton energy scales as EB eV=13.61 μ/ε2. Moreover, the Wannier excitons in bulk TiO2 are delocalized according to the Bohr radii: 3.9 nm for anatase and 7.7 nm for rutile.
format Article
id doaj-art-f5e7598bb16b4c43b9a6b64e5ea3c2d6
institution OA Journals
issn 1687-529X
language English
publishDate 2024-01-01
publisher Wiley
record_format Article
series International Journal of Photoenergy
spelling doaj-art-f5e7598bb16b4c43b9a6b64e5ea3c2d62025-08-20T02:22:26ZengWileyInternational Journal of Photoenergy1687-529X2024-01-01202410.1155/2024/4014216Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT ApproachOscar Olvera-Neria0Raúl García-Cruz1Julio Gonzalez-Torres2Luz María García-Cruz3Jean Luis Castillo-Sánchez4Enrique Poulain5Applied Molecular Atomic Physics Area (FAMA)Applied Molecular Atomic Physics Area (FAMA)Applied Molecular Atomic Physics Area (FAMA)Applied Molecular Atomic Physics Area (FAMA)Applied Molecular Atomic Physics Area (FAMA)Applied Molecular Atomic Physics Area (FAMA)An evolutionary algorithm was employed to locate the global minimum of TiO2n nanoparticles with n=2–20. More than 61,000 structures were calculated with a semiempirical method and reoptimized using density functional theory. The exciton binding energy of TiO2 nanoparticles was determined through the fundamental and optical band gap. Frenkel exciton energy scales as EB eV=8.07/n0.85, resulting in strongly bound excitons of 0.132–1.2 eV for about 1.4 nm nanoparticles. Although the exciton energy decreases with the system size, these tightly bound Frenkel excitons inhibit the separation of photogenerated charge carriers, making their application in photocatalysis and photovoltaic devices difficult, and imposing a minimum particle size. In contrast, the exciton binding energy of rutile is 4 meV, where the Wannier exciton energy scales as EB eV=13.61 μ/ε2. Moreover, the Wannier excitons in bulk TiO2 are delocalized according to the Bohr radii: 3.9 nm for anatase and 7.7 nm for rutile.http://dx.doi.org/10.1155/2024/4014216
spellingShingle Oscar Olvera-Neria
Raúl García-Cruz
Julio Gonzalez-Torres
Luz María García-Cruz
Jean Luis Castillo-Sánchez
Enrique Poulain
Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
International Journal of Photoenergy
title Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
title_full Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
title_fullStr Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
title_full_unstemmed Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
title_short Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach
title_sort strongly bound frenkel excitons on tio2 nanoparticles an evolutionary and dft approach
url http://dx.doi.org/10.1155/2024/4014216
work_keys_str_mv AT oscarolveraneria stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach
AT raulgarciacruz stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach
AT juliogonzaleztorres stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach
AT luzmariagarciacruz stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach
AT jeanluiscastillosanchez stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach
AT enriquepoulain stronglyboundfrenkelexcitonsontio2nanoparticlesanevolutionaryanddftapproach