Local uniform convexity and Kadec-Klee type properties in K-interpolation spaces I: General Theory
We present a systematic study of the interpolation of local uniform convexity and Kadec-Klee type properties in K-interpolation spaces. Using properties of the K-functional of J.Peetre, our approach is based on a detailed analysis of properties of a Banach couple and properties of a K-interpolation...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2004-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2004/678358 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a systematic study of the interpolation of local uniform convexity and Kadec-Klee type properties in K-interpolation spaces. Using properties of the K-functional of J.Peetre, our approach is based on a detailed analysis of properties of a Banach couple and properties of a K-interpolation functional which guarantee that a given K-interpolation space is locally uniformly convex, or has a Kadec-Klee property. A central motivation for our study lies in the observation that classical renorming theorems of Kadec and of Davis, Ghoussoub and Lindenstrauss have an interpolation nature. As a partiular by-product of our study, we show that the theorem of Kadec itself, that each separable Banach space admits an equivalent locally uniformly convex norm, follows directly from our approach. |
---|---|
ISSN: | 0972-6802 |