Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel

Abstract Stretchable afterglow materials have garnered widespread attention owing to their unique combination of optical properties and mechanical flexibility. However, achieving a crystal environment to suppress the non-radiative transition of triplet excitons poses a challenge in constructing stre...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuman Zhang, Yunliang Ji, Shiyi Chen, Siming Chen, Dongjie Xiao, Cheng Chen, Guangyao Guo, Mingjian Zeng, Weiguang Wang, Jingyu Zhang, Hui Li, Ye Tao, Gaozhan Xie, Huanhuan Li, Yizhou Zhang, Runfeng Chen, Wei Huang
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Flexible Electronics
Online Access:https://doi.org/10.1038/s41528-024-00377-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571208400371712
author Shuman Zhang
Yunliang Ji
Shiyi Chen
Siming Chen
Dongjie Xiao
Cheng Chen
Guangyao Guo
Mingjian Zeng
Weiguang Wang
Jingyu Zhang
Hui Li
Ye Tao
Gaozhan Xie
Huanhuan Li
Yizhou Zhang
Runfeng Chen
Wei Huang
author_facet Shuman Zhang
Yunliang Ji
Shiyi Chen
Siming Chen
Dongjie Xiao
Cheng Chen
Guangyao Guo
Mingjian Zeng
Weiguang Wang
Jingyu Zhang
Hui Li
Ye Tao
Gaozhan Xie
Huanhuan Li
Yizhou Zhang
Runfeng Chen
Wei Huang
author_sort Shuman Zhang
collection DOAJ
description Abstract Stretchable afterglow materials have garnered widespread attention owing to their unique combination of optical properties and mechanical flexibility. However, achieving a crystal environment to suppress the non-radiative transition of triplet excitons poses a challenge in constructing stretchable afterglow materials. Herein, we utilize an in situ supersaturated crystallization strategy to form afterglow microcrystals within a hydrogel matrix. This approach enables afterglow emission with a lifetime of 695 ms while maintaining high stretchability with tensile stress surpassing 398 kPa, extensibility over 400% and a high water content of 65.21%. Moreover, the universal supersaturated crystallization strategy allows for conferring tunable afterglow performance. Successful demonstrations in hydrogel 3D printing and anti-counterfeiting purposes showcase the potential for advanced applications of 3D printable afterglow hydrogels. This investigation provides guidelines for generally designing efficient afterglow hydrogels and addresses the inherent contradiction between flexibility and rigid in stretchable afterglow materials.
format Article
id doaj-art-f55c73c7cef448ceb10f820f53f45a7d
institution Kabale University
issn 2397-4621
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series npj Flexible Electronics
spelling doaj-art-f55c73c7cef448ceb10f820f53f45a7d2025-02-02T12:47:24ZengNature Portfolionpj Flexible Electronics2397-46212025-02-019111010.1038/s41528-024-00377-1Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogelShuman Zhang0Yunliang Ji1Shiyi Chen2Siming Chen3Dongjie Xiao4Cheng Chen5Guangyao Guo6Mingjian Zeng7Weiguang Wang8Jingyu Zhang9Hui Li10Ye Tao11Gaozhan Xie12Huanhuan Li13Yizhou Zhang14Runfeng Chen15Wei Huang16State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsInstitute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and TechnologyState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsInstitute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and TechnologyState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communicationsAbstract Stretchable afterglow materials have garnered widespread attention owing to their unique combination of optical properties and mechanical flexibility. However, achieving a crystal environment to suppress the non-radiative transition of triplet excitons poses a challenge in constructing stretchable afterglow materials. Herein, we utilize an in situ supersaturated crystallization strategy to form afterglow microcrystals within a hydrogel matrix. This approach enables afterglow emission with a lifetime of 695 ms while maintaining high stretchability with tensile stress surpassing 398 kPa, extensibility over 400% and a high water content of 65.21%. Moreover, the universal supersaturated crystallization strategy allows for conferring tunable afterglow performance. Successful demonstrations in hydrogel 3D printing and anti-counterfeiting purposes showcase the potential for advanced applications of 3D printable afterglow hydrogels. This investigation provides guidelines for generally designing efficient afterglow hydrogels and addresses the inherent contradiction between flexibility and rigid in stretchable afterglow materials.https://doi.org/10.1038/s41528-024-00377-1
spellingShingle Shuman Zhang
Yunliang Ji
Shiyi Chen
Siming Chen
Dongjie Xiao
Cheng Chen
Guangyao Guo
Mingjian Zeng
Weiguang Wang
Jingyu Zhang
Hui Li
Ye Tao
Gaozhan Xie
Huanhuan Li
Yizhou Zhang
Runfeng Chen
Wei Huang
Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
npj Flexible Electronics
title Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
title_full Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
title_fullStr Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
title_full_unstemmed Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
title_short Universal in situ supersaturated crystallization enables 3D printable afterglow hydrogel
title_sort universal in situ supersaturated crystallization enables 3d printable afterglow hydrogel
url https://doi.org/10.1038/s41528-024-00377-1
work_keys_str_mv AT shumanzhang universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT yunliangji universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT shiyichen universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT simingchen universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT dongjiexiao universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT chengchen universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT guangyaoguo universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT mingjianzeng universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT weiguangwang universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT jingyuzhang universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT huili universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT yetao universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT gaozhanxie universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT huanhuanli universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT yizhouzhang universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT runfengchen universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel
AT weihuang universalinsitusupersaturatedcrystallizationenables3dprintableafterglowhydrogel