Evolution of Bounded Confidence Opinion in Social Networks

We investigate opinion dynamics as a stochastic process in social networks. We introduce the stubborn agent in order to determine the impact of network structure on the emergence of consensus. Depending on the fraction of undirected long-range connections, we observe fascinatingly rich dynamical beh...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Xie, Guangjian Li, Yongjie Yan, Sihui Shu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/3173016
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate opinion dynamics as a stochastic process in social networks. We introduce the stubborn agent in order to determine the impact of network structure on the emergence of consensus. Depending on the fraction of undirected long-range connections, we observe fascinatingly rich dynamical behavior and transitions from disordered to ordered states. In general, we find that the stubborn agent promotes the emergence of consensus due to the so-called “group effect” that facilitates coalescence between separated network components. Agents are also behaviorally constrained Shannon information entropy in networks. However, since agents want to evolve their opinion with Brownian motion, which may in turn impede full consensus, sufficiently frequent long-range links are in such situations crucial for the network to converge into an absorbing phase. Our experimental findings indicate that, for a large range of control parameters, our model yields stable and fluctuating polarized states.
ISSN:1026-0226
1607-887X