Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order

We study the formulas for binomial sums of harmonic numbers of higher order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo&...

Full description

Saved in:
Bibliographic Details
Main Authors: Takao Komatsu, B. Sury
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/321
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588032692191232
author Takao Komatsu
B. Sury
author_facet Takao Komatsu
B. Sury
author_sort Takao Komatsu
collection DOAJ
description We study the formulas for binomial sums of harmonic numbers of higher order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover></mstyle><msubsup><mi>H</mi><mi>k</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac linethickness="0pt"><mi>n</mi><mi>k</mi></mfrac></mstyle></mfenced><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><mi>k</mi></msup><msup><mi>q</mi><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>=</mo><msubsup><mi>H</mi><mi>n</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>−</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><msup><mi>q</mi><mi>j</mi></msup><mi>j</mi></mfrac></mstyle><mspace width="0.166667em"></mspace><mo>.</mo></mrow></semantics></math></inline-formula> Recently, Mneimneh proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In this paper, we find several different expressions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-f51287362dd34001b72224c3fb53ac93
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-f51287362dd34001b72224c3fb53ac932025-01-24T13:40:10ZengMDPI AGMathematics2227-73902025-01-0113232110.3390/math13020321Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher OrderTakao Komatsu0B. Sury1Faculty of Education, Nagasaki University, Nagasaki 852-8521, JapanStat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, IndiaWe study the formulas for binomial sums of harmonic numbers of higher order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover></mstyle><msubsup><mi>H</mi><mi>k</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac linethickness="0pt"><mi>n</mi><mi>k</mi></mfrac></mstyle></mfenced><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><mi>k</mi></msup><msup><mi>q</mi><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>=</mo><msubsup><mi>H</mi><mi>n</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>−</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><msup><mi>q</mi><mi>j</mi></msup><mi>j</mi></mfrac></mstyle><mspace width="0.166667em"></mspace><mo>.</mo></mrow></semantics></math></inline-formula> Recently, Mneimneh proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In this paper, we find several different expressions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/13/2/321polynomial identitiesharmonic numbersdeterminantBell polynomials
spellingShingle Takao Komatsu
B. Sury
Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
Mathematics
polynomial identities
harmonic numbers
determinant
Bell polynomials
title Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
title_full Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
title_fullStr Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
title_full_unstemmed Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
title_short Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
title_sort polynomial identities for binomial sums of harmonic numbers of higher order
topic polynomial identities
harmonic numbers
determinant
Bell polynomials
url https://www.mdpi.com/2227-7390/13/2/321
work_keys_str_mv AT takaokomatsu polynomialidentitiesforbinomialsumsofharmonicnumbersofhigherorder
AT bsury polynomialidentitiesforbinomialsumsofharmonicnumbersofhigherorder