Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order

We study the formulas for binomial sums of harmonic numbers of higher order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo&...

Full description

Saved in:
Bibliographic Details
Main Authors: Takao Komatsu, B. Sury
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/321
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the formulas for binomial sums of harmonic numbers of higher order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover></mstyle><msubsup><mi>H</mi><mi>k</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac linethickness="0pt"><mi>n</mi><mi>k</mi></mfrac></mstyle></mfenced><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><mi>k</mi></msup><msup><mi>q</mi><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>=</mo><msubsup><mi>H</mi><mi>n</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>−</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><msup><mi>q</mi><mi>j</mi></msup><mi>j</mi></mfrac></mstyle><mspace width="0.166667em"></mspace><mo>.</mo></mrow></semantics></math></inline-formula> Recently, Mneimneh proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In this paper, we find several different expressions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
ISSN:2227-7390