Traveling Wave Solutions of Space-Time Fractional Generalized Fifth-Order KdV Equation

The Korteweg-de Vries (KdV) equation, especially the fractional higher order one, provides a relatively accurate description of motions of long waves in shallow water under gravity and wave propagation in one-dimensional nonlinear lattice. In this article, the generalized exp⁡(-Φ(ξ))-expansion metho...

Full description

Saved in:
Bibliographic Details
Main Authors: Dianchen Lu, Chen Yue, Muhammad Arshad
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2017/6743276
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Korteweg-de Vries (KdV) equation, especially the fractional higher order one, provides a relatively accurate description of motions of long waves in shallow water under gravity and wave propagation in one-dimensional nonlinear lattice. In this article, the generalized exp⁡(-Φ(ξ))-expansion method is proposed to construct exact solutions of space-time fractional generalized fifth-order KdV equation with Jumarie’s modified Riemann-Liouville derivatives. At the end, three types of exact traveling wave solutions are obtained which indicate that the method is very practical and suitable for solving nonlinear fractional partial differential equations.
ISSN:1687-9120
1687-9139