Bayesian Nonparametric Modeling for Rapid Design of Metamaterial Microstructures

We consider the problem of rapid design of massive metamaterial (MTM) microstructures from a statistical point of view. A Bayesian nonparametric model, namely, Gaussian Process (GP) mixture, is developed to generate the mapping relationship from the microstructure’s geometric dimension to the electr...

Full description

Saved in:
Bibliographic Details
Main Authors: Bin Liu, Chunlin Ji
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2014/165102
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of rapid design of massive metamaterial (MTM) microstructures from a statistical point of view. A Bayesian nonparametric model, namely, Gaussian Process (GP) mixture, is developed to generate the mapping relationship from the microstructure’s geometric dimension to the electromagnetic response, which is approximately expressed in a closed form of Drude-Lorentz type model. This GP mixture model is neatly able to tackle nonstationarity, discontinuities in the mapping function. The inference is performed using a Markov chain relying on Gibbs sampling. Experimental results demonstrate that the proposed approach is highly efficient in facilitating rapid design of MTM with accuracy.
ISSN:1687-5869
1687-5877