The Kirchhoff Index of Hypercubes and Related Complex Networks

The resistance distance between any two vertices of G is defined as the network effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all the pairs of vertices in G. We firstly provided an exact formul...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiabao Liu, Jinde Cao, Xiang-Feng Pan, Ahmed Elaiw
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/543189
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The resistance distance between any two vertices of G is defined as the network effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all the pairs of vertices in G. We firstly provided an exact formula for the Kirchhoff index of the hypercubes networks Qn by utilizing spectral graph theory. Moreover, we obtained the relationship of Kirchhoff index between hypercubes networks Qn and its three variant networks l(Qn), s(Qn), t(Qn) by deducing the characteristic polynomial of the Laplacian matrix related networks. Finally, the special formulae for the Kirchhoff indexes of l(Qn), s(Qn), and t(Qn) were proposed, respectively.
ISSN:1026-0226
1607-887X