Kodaira–Spencer isomorphisms and degeneracy maps on Iwahori-level Hilbert modular varieties: the saving trace

We consider integral models of Hilbert modular varieties with Iwahori level structure at primes over p, first proving a Kodaira–Spencer isomorphism that gives a concise description of their dualizing sheaves. We then analyze fibres of the degeneracy maps to Hilbert modular varieties of level prime t...

Full description

Saved in:
Bibliographic Details
Main Author: Fred Diamond
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509425000131/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider integral models of Hilbert modular varieties with Iwahori level structure at primes over p, first proving a Kodaira–Spencer isomorphism that gives a concise description of their dualizing sheaves. We then analyze fibres of the degeneracy maps to Hilbert modular varieties of level prime to p and deduce the vanishing of higher direct images of structure and dualizing sheaves, generalizing prior work with Kassaei and Sasaki (for p unramified in the totally real field F). We apply the vanishing results to prove flatness of the finite morphisms in the resulting Stein factorizations, and combine them with the Kodaira–Spencer isomorphism to simplify and generalize the construction of Hecke operators at primes over p on Hilbert modular forms (integrally and mod p).
ISSN:2050-5094