Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb
We propose a novel approach to generate, protect, and control Gottesman-Kitaev-Preskill (GKP) qubits. It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high-impedance circuit mode, autonomously stabilizing the finite-energy GKP...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2025-01-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.15.011011 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832591275639963648 |
---|---|
author | L.-A. Sellem A. Sarlette Z. Leghtas M. Mirrahimi P. Rouchon P. Campagne-Ibarcq |
author_facet | L.-A. Sellem A. Sarlette Z. Leghtas M. Mirrahimi P. Rouchon P. Campagne-Ibarcq |
author_sort | L.-A. Sellem |
collection | DOAJ |
description | We propose a novel approach to generate, protect, and control Gottesman-Kitaev-Preskill (GKP) qubits. It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high-impedance circuit mode, autonomously stabilizing the finite-energy GKP code. The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasiparticle poisoning. In particular, noise from ancillary modes leveraged for dissipation engineering does not propagate at the logical level. In a state-of-the-art experimental setup, we estimate that the encoded qubit lifetime could extend 2 orders of magnitude beyond the break-even point, with substantial margin for improvement through progress in fabrication and control electronics. Qubit initialization, readout, and control via Clifford gates can be performed while maintaining the code stabilization, paving the way toward the assembly of GKP qubits in a fault-tolerant quantum computing architecture. |
format | Article |
id | doaj-art-f400b78ce00845f282457da538dab58c |
institution | Kabale University |
issn | 2160-3308 |
language | English |
publishDate | 2025-01-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review X |
spelling | doaj-art-f400b78ce00845f282457da538dab58c2025-01-22T15:05:25ZengAmerican Physical SocietyPhysical Review X2160-33082025-01-0115101101110.1103/PhysRevX.15.011011Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency CombL.-A. SellemA. SarletteZ. LeghtasM. MirrahimiP. RouchonP. Campagne-IbarcqWe propose a novel approach to generate, protect, and control Gottesman-Kitaev-Preskill (GKP) qubits. It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high-impedance circuit mode, autonomously stabilizing the finite-energy GKP code. The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasiparticle poisoning. In particular, noise from ancillary modes leveraged for dissipation engineering does not propagate at the logical level. In a state-of-the-art experimental setup, we estimate that the encoded qubit lifetime could extend 2 orders of magnitude beyond the break-even point, with substantial margin for improvement through progress in fabrication and control electronics. Qubit initialization, readout, and control via Clifford gates can be performed while maintaining the code stabilization, paving the way toward the assembly of GKP qubits in a fault-tolerant quantum computing architecture.http://doi.org/10.1103/PhysRevX.15.011011 |
spellingShingle | L.-A. Sellem A. Sarlette Z. Leghtas M. Mirrahimi P. Rouchon P. Campagne-Ibarcq Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb Physical Review X |
title | Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb |
title_full | Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb |
title_fullStr | Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb |
title_full_unstemmed | Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb |
title_short | Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb |
title_sort | dissipative protection of a gkp qubit in a high impedance superconducting circuit driven by a microwave frequency comb |
url | http://doi.org/10.1103/PhysRevX.15.011011 |
work_keys_str_mv | AT lasellem dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb AT asarlette dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb AT zleghtas dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb AT mmirrahimi dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb AT prouchon dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb AT pcampagneibarcq dissipativeprotectionofagkpqubitinahighimpedancesuperconductingcircuitdrivenbyamicrowavefrequencycomb |