Inequalities for the Polar Derivative of a Polynomial

For a polynomial 𝑝(𝑧) of degree 𝑛, we consider an operator 𝐷𝛼 which map a polynomial 𝑝(𝑧) into 𝐷𝛼𝑝(𝑧)∶=(𝛼−𝑧)𝑝′(𝑧)+𝑛𝑝(𝑧) with respect to 𝛼. It was proved by Liman et al. (2010) that if 𝑝(𝑧) has no zeros in |𝑧|<1, then for all 𝛼,𝛽∈ℂ with |𝛼|≥1,|𝛽|≤1 and |𝑧|=1, |𝑧𝐷𝛼𝑝(𝑧)+𝑛𝛽((|𝛼|−1)/2)𝑝(𝑧)|≤(𝑛/2){[|𝛼+...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad Zireh
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/181934
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549900530745344
author Ahmad Zireh
author_facet Ahmad Zireh
author_sort Ahmad Zireh
collection DOAJ
description For a polynomial 𝑝(𝑧) of degree 𝑛, we consider an operator 𝐷𝛼 which map a polynomial 𝑝(𝑧) into 𝐷𝛼𝑝(𝑧)∶=(𝛼−𝑧)𝑝′(𝑧)+𝑛𝑝(𝑧) with respect to 𝛼. It was proved by Liman et al. (2010) that if 𝑝(𝑧) has no zeros in |𝑧|<1, then for all 𝛼,𝛽∈ℂ with |𝛼|≥1,|𝛽|≤1 and |𝑧|=1, |𝑧𝐷𝛼𝑝(𝑧)+𝑛𝛽((|𝛼|−1)/2)𝑝(𝑧)|≤(𝑛/2){[|𝛼+𝛽((|𝛼|−1)/2)|+|𝑧+𝛽((|𝛼|−1)/2)|]max|𝑧|=1|𝑝(𝑧)|−[|𝛼+𝛽((|𝛼|−1)/2)|−|𝑧+𝛽((|𝛼|−1)/2)|]min|𝑧|=1|𝑝(𝑧)|}. In this paper we extend the above inequality for the polynomials having no zeros in |𝑧|<𝑘, where 𝑘≤1. Our result generalizes certain well-known polynomial inequalities.
format Article
id doaj-art-f3d7e6f7324440c2aed8d535db84fc8f
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-f3d7e6f7324440c2aed8d535db84fc8f2025-02-03T06:08:20ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/181934181934Inequalities for the Polar Derivative of a PolynomialAhmad Zireh0Department of Mathematics, Shahrood University of Technology, P.O. Box 316-36155, Shahrood, IranFor a polynomial 𝑝(𝑧) of degree 𝑛, we consider an operator 𝐷𝛼 which map a polynomial 𝑝(𝑧) into 𝐷𝛼𝑝(𝑧)∶=(𝛼−𝑧)𝑝′(𝑧)+𝑛𝑝(𝑧) with respect to 𝛼. It was proved by Liman et al. (2010) that if 𝑝(𝑧) has no zeros in |𝑧|<1, then for all 𝛼,𝛽∈ℂ with |𝛼|≥1,|𝛽|≤1 and |𝑧|=1, |𝑧𝐷𝛼𝑝(𝑧)+𝑛𝛽((|𝛼|−1)/2)𝑝(𝑧)|≤(𝑛/2){[|𝛼+𝛽((|𝛼|−1)/2)|+|𝑧+𝛽((|𝛼|−1)/2)|]max|𝑧|=1|𝑝(𝑧)|−[|𝛼+𝛽((|𝛼|−1)/2)|−|𝑧+𝛽((|𝛼|−1)/2)|]min|𝑧|=1|𝑝(𝑧)|}. In this paper we extend the above inequality for the polynomials having no zeros in |𝑧|<𝑘, where 𝑘≤1. Our result generalizes certain well-known polynomial inequalities.http://dx.doi.org/10.1155/2012/181934
spellingShingle Ahmad Zireh
Inequalities for the Polar Derivative of a Polynomial
Abstract and Applied Analysis
title Inequalities for the Polar Derivative of a Polynomial
title_full Inequalities for the Polar Derivative of a Polynomial
title_fullStr Inequalities for the Polar Derivative of a Polynomial
title_full_unstemmed Inequalities for the Polar Derivative of a Polynomial
title_short Inequalities for the Polar Derivative of a Polynomial
title_sort inequalities for the polar derivative of a polynomial
url http://dx.doi.org/10.1155/2012/181934
work_keys_str_mv AT ahmadzireh inequalitiesforthepolarderivativeofapolynomial