The Structure of φ-Module Amenable Banach Algebras

We study the concept of φ-module amenability of Banach algebras, which are Banach modules over another Banach algebra with compatible actions. Also, we compare the notions of φ-amenability and φ-module amenability of Banach algebras. As a consequence, we show that, if S is an inverse semigroup with...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahmood Lashkarizadeh Bami, Mohammad Valaei, Massoud Amini
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/176736
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558975067881472
author Mahmood Lashkarizadeh Bami
Mohammad Valaei
Massoud Amini
author_facet Mahmood Lashkarizadeh Bami
Mohammad Valaei
Massoud Amini
author_sort Mahmood Lashkarizadeh Bami
collection DOAJ
description We study the concept of φ-module amenability of Banach algebras, which are Banach modules over another Banach algebra with compatible actions. Also, we compare the notions of φ-amenability and φ-module amenability of Banach algebras. As a consequence, we show that, if S is an inverse semigroup with finite set E of idempotents and l1S is a commutative Banach l1E-module, then l1S** is φ**-module amenable if and only if S is finite, when φ∈Homl1El1S is an epimorphism. Indeed, we have generalized a well-known result due to Ghahramani et al. (1996).
format Article
id doaj-art-f3942f529a2d4da9b1b369b85c106656
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-f3942f529a2d4da9b1b369b85c1066562025-02-03T01:31:11ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/176736176736The Structure of φ-Module Amenable Banach AlgebrasMahmood Lashkarizadeh Bami0Mohammad Valaei1Massoud Amini2Department of Mathematics, University of Isfahan, Isfahan, IranDepartment of Mathematics, University of Isfahan, Isfahan, IranDepartment of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran 14115-134, IranWe study the concept of φ-module amenability of Banach algebras, which are Banach modules over another Banach algebra with compatible actions. Also, we compare the notions of φ-amenability and φ-module amenability of Banach algebras. As a consequence, we show that, if S is an inverse semigroup with finite set E of idempotents and l1S is a commutative Banach l1E-module, then l1S** is φ**-module amenable if and only if S is finite, when φ∈Homl1El1S is an epimorphism. Indeed, we have generalized a well-known result due to Ghahramani et al. (1996).http://dx.doi.org/10.1155/2014/176736
spellingShingle Mahmood Lashkarizadeh Bami
Mohammad Valaei
Massoud Amini
The Structure of φ-Module Amenable Banach Algebras
Abstract and Applied Analysis
title The Structure of φ-Module Amenable Banach Algebras
title_full The Structure of φ-Module Amenable Banach Algebras
title_fullStr The Structure of φ-Module Amenable Banach Algebras
title_full_unstemmed The Structure of φ-Module Amenable Banach Algebras
title_short The Structure of φ-Module Amenable Banach Algebras
title_sort structure of φ module amenable banach algebras
url http://dx.doi.org/10.1155/2014/176736
work_keys_str_mv AT mahmoodlashkarizadehbami thestructureofphmoduleamenablebanachalgebras
AT mohammadvalaei thestructureofphmoduleamenablebanachalgebras
AT massoudamini thestructureofphmoduleamenablebanachalgebras
AT mahmoodlashkarizadehbami structureofphmoduleamenablebanachalgebras
AT mohammadvalaei structureofphmoduleamenablebanachalgebras
AT massoudamini structureofphmoduleamenablebanachalgebras