Stability Analysis of the Supercritical Surface Quasi-Geostrophic Equation
This paper is devoted to the study of the stability issue of the supercritical dissipative surface quasi-geostrophic equation with nondecay low-regular external force. Supposing that the weak solution of the surface quasi-geostrophic equation with the force satisfies the growth condition in the cr...
Saved in:
Main Authors: | Yan Jia, Xingguo Gui, Bo-Qing Dong |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/620320 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
A linear filter regularization for POD-based reduced-order models of the quasi-geostrophic equations
by: Girfoglio, Michele, et al.
Published: (2023-03-01) -
Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
by: Quanqing Li, et al.
Published: (2024-12-01) -
Elliptic equations in $ \mathbb{R}^2 $ involving supercritical exponential growth
by: Yony Raúl Santaria Leuyacc
Published: (2024-09-01) -
Rheological properties and coalescence stability of degassed crude oil emulsion: Influence of supercritical CO2 treatment
by: Guangyu Sun, et al.
Published: (2025-02-01) -
Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces
by: M. Eshaghi Gordji, et al.
Published: (2009-01-01)