A Novel Version of HPM Coupled with the PSEM Method for Solving the Blasius Problem
This work studies the nonlinear differential equation that models the Blasius problem (BP) which is of great importance in fluid dynamics. The aim is to obtain an approximate analytical expression that adequately describes the phenomenon considered. To find such approximation, we propose a new metho...
Saved in:
Main Authors: | Uriel Filobello-Nino, Hector Vazquez-Leal, Jesus Huerta-Chua, Victor Manuel Jimenez-Fernandez, Mario Alberto Sandoval-Hernandez, Enrique Delgado-Alvarado, Victor Manuel Tlapa-Carrera |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2021/5909174 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Optimized Direct Padé and HPM for Solving Equation of Oxygen Diffusion in a Spherical Cell
by: M. A. Sandoval-Hernandez, et al.
Published: (2018-01-01) -
Constructing Uniform Approximate Analytical Solutions for the Blasius Problem
by: Beong In Yun
Published: (2014-01-01) -
Approximate Analytical Solutions Using Hyperbolic Functions for the Generalized Blasius Problem
by: Beong In Yun
Published: (2012-01-01) -
HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
by: Shu-Li Mei, et al.
Published: (2014-01-01) -
The HPM Applied to MHD Nanofluid Flow over a Horizontal Stretching Plate
by: S. S. Nourazar, et al.
Published: (2011-01-01)