Experimental Investigation of the Relationship between the P-Wave Velocity and the Mechanical Properties of Damaged Sandstone
To obtain an improved and more accurate understanding of the relationship between the P-wave velocity and the mechanical properties of damaged sandstone, uniaxial compression tests were performed on sandstone subjected to different high-temperature treatments or freeze-thaw (F-T) cycles. After high-...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Advances in Materials Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2016/7654234 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To obtain an improved and more accurate understanding of the relationship between the P-wave velocity and the mechanical properties of damaged sandstone, uniaxial compression tests were performed on sandstone subjected to different high-temperature treatments or freeze-thaw (F-T) cycles. After high-temperature treatment, the tests showed a generally positive relationship between the P-wave velocity and mechanical characteristics, although there were many exceptions. The mechanical properties showed significant differences for a given P-wave velocity. Based on the mechanical tests after the F-T cycles, the mechanical properties and P-wave velocities exhibited different trends. The UCS and Young’s modulus values slightly decreased after 30, 40, and 50 cycles, whereas both an increase and a decrease occurred in the P-wave velocity. The UCS, Young’s modulus, and P-wave velocity represent different macrobehaviors of rock properties. A statistical relationship exists between the P-wave velocity and mechanical properties, such as the UCS and Young’s modulus, but no mechanical relationship exists. Further attention should be given to using the P-wave velocity to estimate and predict the mechanical properties of rock. |
|---|---|
| ISSN: | 1687-8434 1687-8442 |