Bounded Motions of the Dynamical Systems Described by Differential Inclusions
The boundedness of the motions of the dynamical system described by a differential inclusion with control vector is studied. It is assumed that the right-hand side of the differential inclusion is upper semicontinuous. Using positionally weakly invariant sets, sufficient conditions for boundedness o...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2009-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2009/617936 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The boundedness of the motions of the dynamical system described by a differential inclusion with control vector is studied. It is assumed that the right-hand side of the differential inclusion is upper semicontinuous. Using positionally weakly invariant sets, sufficient conditions for boundedness of the motions of a dynamical system are given. These conditions have infinitesimal form and are expressed by the Hamiltonian of the dynamical system. |
---|---|
ISSN: | 1085-3375 1687-0409 |