Global Analysis of a Liénard System with Quadratic Damping
In this paper, the global analysis of a Liénard equation with quadratic damping is studied. There are 22 different global phase portraits in the Poincaré disc. Every global phase portrait is given as well as the complete global bifurcation diagram. Firstly, the equilibria at finite and infinite of t...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2018/1249620 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, the global analysis of a Liénard equation with quadratic damping is studied. There are 22 different global phase portraits in the Poincaré disc. Every global phase portrait is given as well as the complete global bifurcation diagram. Firstly, the equilibria at finite and infinite of the Liénard system are discussed. The properties of the equilibria are studied. Then, the sufficient and necessary conditions of the system with closed orbits are obtained. The degenerate Bogdanov-Takens bifurcation is studied and the bifurcation diagrams of the system are given. |
|---|---|
| ISSN: | 1026-0226 1607-887X |