Periodic Solutions for a Semi-Ratio-Dependent Predator-Prey System with Delays on Time Scales

This paper is devoted to the existence of periodic solutions for a semi-ratio-dependent predator-prey system with time delays on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of periodic sol...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoquan Ding, Gaifang Zhao
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/928704
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is devoted to the existence of periodic solutions for a semi-ratio-dependent predator-prey system with time delays on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of periodic solutions. Our results show that for the most monotonic prey growth such as the logistic, the Gilpin, and the Smith growth, and the most celebrated functional responses such as the Holling type, the sigmoidal type, the Ivlev type, the Monod-Haldane type, and the Beddington-DeAngelis type, the system always has at least one periodic solution. Some known results are shown to be special cases of the present paper.
ISSN:1026-0226
1607-887X