Quantitative functional calculus in Sobolev spaces

In the frame work of Sobolev (Bessel potential) spaces Hn(Rd,R or C), we consider the nonlinear Nemytskij operator sending a function x∈Rd↦f(x) into a composite function x∈Rd↦G(f(x),x). Assuming sufficient smoothness for G, we give a “tame” bound on the Hn norm of this composite function in terms of...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlo Morosi, Livio Pizzocchero
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2004/832750
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560077501890560
author Carlo Morosi
Livio Pizzocchero
author_facet Carlo Morosi
Livio Pizzocchero
author_sort Carlo Morosi
collection DOAJ
description In the frame work of Sobolev (Bessel potential) spaces Hn(Rd,R or C), we consider the nonlinear Nemytskij operator sending a function x∈Rd↦f(x) into a composite function x∈Rd↦G(f(x),x). Assuming sufficient smoothness for G, we give a “tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f, with a coefficient depending on G and on the Ha norm of f, for all integers n,a,d with a>d/2. In comparison with previous results on this subject, our bound is fully explicit, allowing to estimate quantitatively the Hn norm of the function x↦G(f(x),x). When applied to the case G(f(x),x)=f2(x), this bound agrees with a previous result of ours on the pointwise product of functions in Sobolev spaces.
format Article
id doaj-art-f1b15d9528944b2dab64f813b4da529e
institution Kabale University
issn 0972-6802
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-f1b15d9528944b2dab64f813b4da529e2025-02-03T01:28:36ZengWileyJournal of Function Spaces and Applications0972-68022004-01-012327932110.1155/2004/832750Quantitative functional calculus in Sobolev spacesCarlo Morosi0Livio Pizzocchero1Dipartimento di Matematica, Politecnico di Milano, P.za L. da Vinci 32, I-20133 Milano, ItalyDipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, ItalyIn the frame work of Sobolev (Bessel potential) spaces Hn(Rd,R or C), we consider the nonlinear Nemytskij operator sending a function x∈Rd↦f(x) into a composite function x∈Rd↦G(f(x),x). Assuming sufficient smoothness for G, we give a “tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f, with a coefficient depending on G and on the Ha norm of f, for all integers n,a,d with a>d/2. In comparison with previous results on this subject, our bound is fully explicit, allowing to estimate quantitatively the Hn norm of the function x↦G(f(x),x). When applied to the case G(f(x),x)=f2(x), this bound agrees with a previous result of ours on the pointwise product of functions in Sobolev spaces.http://dx.doi.org/10.1155/2004/832750
spellingShingle Carlo Morosi
Livio Pizzocchero
Quantitative functional calculus in Sobolev spaces
Journal of Function Spaces and Applications
title Quantitative functional calculus in Sobolev spaces
title_full Quantitative functional calculus in Sobolev spaces
title_fullStr Quantitative functional calculus in Sobolev spaces
title_full_unstemmed Quantitative functional calculus in Sobolev spaces
title_short Quantitative functional calculus in Sobolev spaces
title_sort quantitative functional calculus in sobolev spaces
url http://dx.doi.org/10.1155/2004/832750
work_keys_str_mv AT carlomorosi quantitativefunctionalcalculusinsobolevspaces
AT liviopizzocchero quantitativefunctionalcalculusinsobolevspaces